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Abstract. In this paper, we deal with a class of optimal control problems associated
to linear systems obtained by perturbing a Neumann problem for Laplace operator on a
regular bounded domain in the n dimensional Euclidean space. The sets of admissible
controls are in some wide classes of closed convex subsets of the Hilbert space of all
square integrable functions on the boundary, and the cost functionals are quadratic
means involving the traces of the states. For these systems, we prove existence of the
(perturbed) states and optimal controls, and study their behavior. We establish the
systems of optimality conditions and investigate the adjoint states, and prove their
strong convergence in some Sobolev spaces.

1. Introduction and Statement of the Problems

In all this paper, £ will be a connected regular and bounded open subset of the
Euclidean space R™ with a smooth boundary 8Q =: I'. We denote by H'({2) the
classical real Sobolev space equipped with its usual inner product and associated
norm ||.|| g1 (). For every y € H'(Q), we shall denote by T'(y) or simply by y
the I'-trace (i.e. the restriction of y to I'). We know, by the trace theorem, see
[4], that the map T is a bounded linear map from the Sobolev space H' () to
L2(D).
For every € > 0, we want to find

min{‘]ﬁ(v)7 CAS uad}1 (Qe)
where Uyg is a closed convex subset of L2(T') := {u € L*(T) : frudy =0}, and

J(v) = /F Gy Ty &, O
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where h is a fixed (decision) function in L?(I'), and y.(v) is a solution of the
following problem:

— Ay(v) =0, on§,

%ye(v) + ey (v) =v, at T'=0Q, (P)(v)
ye(v) €V,

where 2 y.(v) is the normal derivative of y.(v), and V = {y € H'(Q) : [Lydy =
0}. The space V is a Hilbert space when it is endowed with the restriction of
the Hilbert structure of H'(Q). We can also consider in V the following inner
product and associated norm given by

wia= [ vuvsdu, lolly = [/ﬂ |Vy|2dwr WzeV). @

It is well known that the norm ||.||v is equivalent to the resriction of the usual
norm of H'(Q) to the space V. Therefore, according to the trace theorem, we
can find a constant A > 0 such that

lyllzzry < Aliyllv, Yy eV (3)

In all this paper, U,q will be a closed convex subset of L3(T), verifying one
of the following assumptions:

(A1) There exists a positive constant M > 0, such that ||ul|2ry < M, Yu € Uyg.

(A2) Uyg is not bounded and for each sequence (un)n of elements inlyq, satisfying
limp o0 ||un|lL2(ry = +00, the linear space spanned by the set {u, : n € N}
has finite dimension.

(A3) There exists a finite dimensional subspace U of L3(T'), containing Usg.

The purpose of this work is to prove, under one of the assumptions (A1),
(A2) or (A3), existence and uniqueness of the state y. and the optimal control
u. for the system (P.)(uc)&(Qc). This will be done in the next section. In the
third section, we shall study their behavior. More precisely, we shall prove that
U, converges weakly to the unique element u € Uyq satisfying J(u) = min{J(v) :
v € Uyq} where J(v) = [ (y(v) — h)? dv, and y(v) is the unique solution of the
following problem:

- Ay(v) =0, on £,
;{i y(v) =w, at T =0Q, (Po)(v)
v
ylu) e V,

The fourth section is devoted to investigate the system of optimality conditions
for the optimal controls of the problem (Q.), and to find the adjoint state pe
associated to the perturbed state y.. In the section five, we shall establish the
strong convergence of the adjoint state p. to the adjoint state p associated to y
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the solution of the system (P)(u), where u is the optimal control for the limit
problem.

In the papers [1] and [2], the authors considered the problem: of finding
min{/.(v), v € Uaa},

where U,4 is any arbitrary finite dimensional subspace of L3(T'), and

L) = [ @) -2ty + [ (gouete) =)

where z1, 25 are two fixed (decision) functions in L(T'), and y.(v) is a solution
of the system (P.)(v). In these papers, we have studied only the behavior of the
optimal controls and the corresponding states. We have not studied the adjoint
states and we have not found the systems of optimality conditions. So, our study
was very limited and the cost functional I, was more easy to deal with than Je
taken here. In this paper, the class of admissible controls is more wide and the
methods developed here are more general than those used in the papers [1] and
[2]. Moreover, many results stated here remain valid for the optimal control
studied in these papers and the methods used here may be applied to the cost
functional I.

2. Existence and Uniqueness of the State and of the Optimal Control

The space V will be endowed with the inner product (resp. the norm) given
by (2). For each e > 0, and for each v € L§(T), one can use Lax-Milgram
Theorem in the variational formulation for the problem (P.)(v), and conclude
that there exists a unique element y. € V satisfying the problem (P.)(v). To
prove the existence of optimal controls, we need the following proposition:

Proposition 2.1. Let Uy be a closed convex subset of LE(T"), verifying (A1) or
(A2) or (As). Then for each € > 0, we have

(2.1.1) The mapping Se : LE(L) — V, v — y(v) is injective, linear and con-
tinuous having a norm || S| < A.

(2.1.2) The linear mapping R : L3(T) — L§(T), v — y.(v) is injective and
compact having a norm | R¢|| < A2

(2.1.3) The map J. : LE(T) — [0,+o0[, v+ Jc(v) is strictly convex and weakly
Ls.c. (i.e., lower semicontinuous) on LE(T).

(2.1.4) If Uyq 1s not bounded, then for every sequence (vn) in Upa, such that
llvnllL2ry — +00,, one has Je(vn) — +00, when n — +-o0.

Proof. (2.1.1) It is clear that the mappings Se and R, are linear and that S. is
injective. Let v (resp. w) in L?(T). Then, by using the variational formulation
for the problem (P.)(v) (resp. (P¢)(w)), we get
/ Viy(v) — ye(w)].Vz dw + e/r(ye(v) — ye(w))zdy =
0

/(v —w)zdy, VzeV. {4)
iy
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We set z = y.(v) — ye(w) in (4), then we obtain

/ (v — 0)((4e(o) — pe()) dy = lyev) — gelw)|3 + ¢ / (92w} Py
r r

By using the Cauchy-Schwarz inequality and the trace theorem, we deduce from
the last inequality that

[e(v) = ge(w)llv < Allv = wllL2(r).- (5)

This proves (2.1.1) and a part of (2.1,2).

(2.1.2) Let v € L%(T') be such that R.(v) = ye(v) = 0 at I'. Then y.(v) € H} ()
and is a solution of the next problem:

— Aye(v) =0, on Q,

—_— — I =
8Vy€(v) U? a't aQ)

ye(v) € V.

Using the variational formulation of this problem, we obtain [, |V (v)|? dw = 0.
This equality gives y.(v) = 0. Thus R, is injective. According to (3) and to
(2.1.1) we see that its norm is less than A\?. It remains to show that the mapping
R, is compact. Let B be a bounded subset of L*(T'). Then {y.(v) : v € B} is
bounded in H*(2). Therefore (see [7, Theorem 4, p. 143]) the set of its traces on
I is conditionally compact in the Hilbert space L%(T').

(2.1.3) It is easy to prove that J. is strictly convex. It remains to show that J,
is weakly l.s.c. on L(I"). But this is a consequence of (2.1.2) and the fact that
the norm in any Hilbert space is weakly ls.c.

(2.1.4) Let Z be the linear space spanned in L?(T") by the set {v, : n € N}.
Since Z has finite dimension and R, is injective, then according to the closed
graph theorem, we can find a positive constant §. > 0, such that the following
inequality holds true:

dellvzmyll < Nye()ll L2y, Vv € 2. (6)
This completes the proof of our proposition. ™
Now we can prove the existence and uniqueness of optimal controls.

Theorem 2.2. Let U,y be a closed and convex subset of LE(T) verifying (A1)
or (As) or (As). Then for each € > 0, there exists a unique element u. € Uyq,
satisfying Je(u.) = min{J.(v); v € Uaa}-

Proof. The uniqueness of u, results from the fact that J. is strictly convex.
The existence of u. is clear when U4 is bounded. When U/, is not bounded in
L3(T), then by a classical result of Lions (see [5]) in order to prove the existence
of optimal controls, it suffices to verify the two following conditions:
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(i) The map: v — J.(v) is weakly L.s.c. on the set 4.

(ii) For every sequence (vy,) in Ugq, such that ||vn||L2(ry — 400, then Je(v,) —
400, when n — 400.

But all these conditions are consequences of Proposition 2.1. ™

3. Convergence of the State y. and of the Optimal Control u,
Before stating the main result of this section, we need the following lemma:

Lemma 3.1. (3.1.1) For every v € L3(T), let y(v) be the unique solution of the
problem (Po)(v). Then the linear mapping R : L3() — L3(T), v — y(v) is
injective and compact having a norm | R|| < A%.

(3.1.2) For every v € Li(T'), the state y.(v) converges in the space V to y(v),
when € — 0.

(3.1.3) For every € > 0, we have

lye(ue) — y(ue)llv < eMllye(ue)llLz(r- )

Proof. (3.1.1) is obtained by the same methods used to prove (2.1.1) and (2.1.2)
of Proposition 2.1.

(3.1.2) We use the variational formulations of the problems (Pg)(v), and (P)(v).
Then we get after some computations that

ly() - g% < e /F Je@)¥) - ve(®)] dy.

By using Cauchy-Schwarz inequality, Proposition 2.1, and the inequality (3), we
obtain

ly(v) = ye@)llv < eX*[lv]lLzqry, Ve > 0.

(3.1.3) In a similar way one uses variational formulations of the problems
(Po)(ue), and (P.)(u.), together with the inequality (3) to obtain the needed
inequality. This completes the proof of our lemma. n

Now, we are ready to state and prove the main result of this section dealing
with convergence problems. More precisely, we have

Theorem 3.2. Let Uyq be a closed and convez subset of Li(T) verifying (A1)
or (Ag) or (As), and let € €]0,1]. Then

(3.2.1) The optimal control u. converges weakly in L*(T), as e — 0, to the
unique element u € Uyq, verifying J(u) = min{J(v);v € Uyq}, where J(v) =
ISVIOE h)? dv, and y(v) is the unique solution of the problem (Py)(v). This
convergence turns to be strong when (As) holds true.

(3.2.2) The state y.(ue) converges strongly in the space V, as € — 0, to y(u) the
unique solution of the problem (Fp)(u).
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Proof. (i) If U,q is bounded then there exists a positive constant M > 0 such
that |Jucli2ry < M for all € €]0,1], and we can extract a subsequence (called
again (u.)) converging weakly to a unique element u € U,q.

(ii) Suppose that U,q is not bounded but verifying (As) or (As). Take and fix
an element w € Ugg. Then for every e €]0, 1], we have 0 < J.(u,) < J.(w). By
Proposition 2.1, we have ||ye(w)||r2(ry < A2||w]|2(ry. Thus we can find a positive
constant C; independent of € €10, 1] such that 0 < J.(u,) < Cj. This inequality
implies that the set (of traces) {ye(uc) : 0 < € < 1} is bounded in L?(T'). By
using (7) we deduce that the set (of traces) {y(ue) : 0 < ¢ < 1} is bounded in
L3(T). By (3.1.1) of Lemma 3.1, we conclude that the set {u.: 0 < e < 1} must
be bounded in L?(T). Therefore, we can extract a subsequence (called again
(ue)) converging weakly to a unique element u € U,gq.

(iii) Let us denote u* the unique element in Uyq verifying J{u.) = min{J(v) :
v € Upq }, where J(v fr d’y, and y(v) is the unique solution of the
problem (Pg)(v). To s1mphfy the notatlons, we set ye(ue) = y.. We will prove
that Je(u) converges to J(u,) when e — 0.

For every v € Uyq, we can write the inequality J.(u.) < J.(v). From which

we deduce that
limsup Je (ue) < hmJ( ) = J(v). (8)
€—0
The equality in the right member of (8) is true since y.(v) converges strongly
in V to y(v) and consequently, the trace y.(v) on I' converges strongly in the
Hilbert space L?(T") to the trace of y(v).

Since y. is bounded in V we can find a subsequence (denoted again by y.)
converging weakly to an element z € V. It is no hard to see that we must have
z = y(u), where y(u) is the unique solution of the problem (P¢}(u). Now, by using
Theorem 4, p.143 of [7], we can suppose that this subsequence converges also
strongly to y(u) in the space L2(T"). Then according to the lower semicontinuity
of the norm in L?(T"), we can assert that

limi[nf Je(ue) = J(u). (9)
Then we deduce that u = u, and that lim._¢ Je(u.) = = [ ly(u) - h? dy.

We deduce that u, converges weakly to u, and that the net of traces (ye) con-
verges strongly in L?(T') to the trace of y(u).

(iv) Now, let us show that the state y. converges strongly in V to y(u), when
€ — 0. To this end, we start by writing the following inequalities:

e (ue) = y(lly < lye(ue) —y(ullv + lly(ue) — y(wllv. (10)

The inequality (7) will imply that

1ye(ue) = y(u)llv < eAllye(ue)llLar)- (11)

By using the variational formulations of the problems (Pg)(u.) and (Pg)(u), we
obtain

ly(ue) — y(w)lv < V2M [lly(ue) — y(w)l|a ] (12)
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Now, by using the trace theorem and the inequality (7), we have

lyCue) = y(Wll L2y < Nly(ue) — ge(ue)llzary + llye(ue) — y(w)| L2r)

< eX?||ye(ue)lizary + lye(ue) — y(u)ll 2y - (13)
We conclude that y. converges strongly to y{(u) in the space V when € — 0. This
finishes the proof of our theorem. [ |

4. Adjoint State and System of Optimality Conditions

Let € > 0. For every v € L3(T"), we consider the following system:
— Ap.(v) =0, on £,

9 1
g—iﬂf{f-‘) + epe(V) = ye(v) = h + T [ hdry, (Pe)™(w)
pe(v) €V,

where |T'| designates the Lebesgue measure of I, and y.(v) is the solution of the
system (P.)(v). One can use Lax-Milgram Theorem in the variational formula-
tion for the problem (P})(v), and conclude that it has a unique solution p. € V.
We shall see that p.(v) is an adjoint state for y.(v). To this end, it is sufficient
to prove the following proposition:

Proposition 4.1. Let € €]0, +00[. Then for each v,w € L(T'), we have

[ wp0)dy = J70)w) (14)
r

where J¢(v) is the derivative of the cost functional J. at v, and J'(v)(w) is its
value on the vector w.

Proof. Tt is easy to see that the derivative mapping J!(v) of the cost functional
Je at v is given for every ¢ € L3(T') by

Je(v)(g) = 2/Fye(q)[ye(v) — h]dy. (15)

We have the following equalities:
5]
[ vty = [ - ertwlp) o
r ov r
=/WMWW*LMWMWW (16)
T

Now, by using Green formula, we get
0 0
[ govetlpeordy = [ w)5p. ) dy
—— [ uwlpo)ay
+ [ vetwlnte) - by an)
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By using the relations (16) and (17) we obtain

[wpto)dr = [ wlyetv) - Ha (18)

r

which is the desired formula. [
Let Uyq be a closed and convex subset of LZ(T") verifying (A1) or (Az) or (A3),

and let € > 0. Then from Theorem 4.1, we derive the following characterization
of the optimal control u. of the problem (Q.),

/[v — ue)pe(ue) dy > 0, Yu € Uyg.
r

Thus, the system of optimality conditions related to our problem can be written
in the following form:

( — Ap. =0, on €,

— Ay, =0, on Q,

1o}

—Pe +€pe =y —h at T,
ov

5% + ey = ue at T,

/{v — ue]pe(ue) dy > 0, Yv € Uga,
r

pe € HY(Q), yEEHI(Q),/FpEd'y=O, and /Fyedfy=0.

5. Convergence of the Adjoint State p.
The purpose of this section is to prove the following theorem.

Theorem 5.1. LetUy,q be a closed and convex subset of LE(T) verifying (A1) or
(A2) or (A3), and let € €]0,1[. Let u be the optimal control described by (3.2.1)
of Theorem 3.2. Then
(5.1.1) The adjoint state p. converges strongly in V, to the unique element p(u) €
V', verifying

— Ap(u) =0, on Q,

d 1
EM“} = y(u) —h+ m th’y,

p(u) € H'(Q), /p(u)d’yzO.
T

(Po)™(u)

Thus, p(u) is the adjoint state corresponding to the state y(u) solution of the
problem (Pg)(u).
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(5.1.2) The optimal control u is characterized by the following system of opti-
mality conditions,

(— Ap(u) =0, on ),
— Ay(u) =0, onQ,

0
o (uy=y—h atT,

0
T =
ES (u)=u atT,

o= bty dr 20, ¥ € U,
r

p(u)eHl(Q),y(u)eHl(Q),/ B = and/ )dy = 0.

Proof. We know (see [7] for example) that we can find a positive constant p > 0,
such that

1/2 1/2
[ wraos [ car| <ol [mra] wev.  qo)
Q N

Now, by using the variational formulations for the adjoint systems (P )*(u.) and
(Po)*(u), we get after some computations the following inequality

/IV IQdW——e/pe[pe p]d7+/[ye y][pe — p) dvy

where we have denoted p. := pc(u.), and p := p(u). With the help of the relation
(19), we obtain

/Q IV (pe - p)I? dw < epllpell 2y Ipe — Pllv + p*llye = yllvllpe = pllv.  (20)
The inequality (20) is equivalent to say that we have

Ipe = pllv < epllpell2ry + A llye = yllv -

To finish the proof of our theorem, it suffices to see that the net of traces p. is
bounded in L2(T"). But this fact can be easily proved by using the relation (18).
]
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