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Abstract. In this paper, we deal with a class of optimal control problems associated

to linear systems obtained by perturbing a Neumann problem for Laplace operator on a

regular bounded domain in the n, dimensional Euclidean space. The sets of admissible

controls are in some wide classes of closed convex subsets of the Hilbert space of all

square integrable functions on the boundary, and the cost functionals are quadratic

means involving the traces of the states. For these systems, we prove existence of the

(perturbed) states and optimal controls, and study their behavior. We establish the

systems of optimality conditions and investigate the adjoint states, and prove their

strong convergence in some Sobolev spaces'

l-. Introduction and Statement of the Problems

In all this paper, 0 will be a connected regular a bounded open subset of the

Euciidean space Rn with a smooth boundary 0O f. We denote by I11(Cl) the

classical real Sobolev space equipped with its usual inner product and associated

norm ll. l ls'1oy. For every A e FIr(O), we shall denote bv T(A) or simply by y

the l-trace (i.e. the restriction of.y to f). We know, by the trace theorem, see

l4], that the map ? is a bounded linear map from the Sobolev space IlI(0) to

L2(r \ .
For every e > 0, we want to find

min{J. (u) ,  u  €Uoa}, (Q. )

wherel' lo4 is a closed convex subset of L|F) 7 {u € f2(f): irudl:0}, and

J, ( , )  - -  
[  @,@t -  h) 'd t .

J T
( 1 )



76 Mohamed Akkouchi

where h is a fixed (decision) function in Lz(l), and y,(u) is a solution of the
following problem:

-  La,@): o, on f , ) ,

a t l : 0 0 , (P . ) ( r )

where f,,a,('u) is the normal derivative of E"(u), and V : {a e IIt ({-l) , [, a dl :

0]. The space V is a Hilbert space when it is endowed with the restriction of
the Hilbert structure of fIr(O). We can also consider in V the following inner
product and associated norm given by

(y  l , ) :  lnvr .v ,a, ,  l ls l l , , :  l l r lor l 'a . f+ fo,z ev) .

It is well known that the norm ll.lly is equivalent to the resriction of the usual
norm of 11t(0) to the space V. Therefore, according to the trace theorem, we
can find a constant ,\ > 0 such that

l l s l l r t " l  <  r l lY l l v ,  Vs  eV '  (3 )

In all this paper, l,l"awi\l be a closed convex subset of -Lfi(f), verifying one
of the following assumptions:

(A1) There erists a positiue constant M ) 0, such that l lr l lr,,fr l I M, Yu €Uoa.

(Az) l/"a is not bound,ed and for each sequence (un)- of elements inLloa, satisfyi,ng
Iim'-- l lu"l lz,,1ry : too, the l ' inear space spanned by the set {un: n, e N}
has finite dimens'ion.

(As) There etists a fi,nite dimens'ional subspacell of ,3(f), conta'iningl,lo6.

The purpose of this work is to prove, under one of the assumptions (A1),
(A2) or (A3), existence and uniqueness of the state y, and the optimal control
u. for the system (P.)(u.)&(Q.). This wil l be done in the next section. In the
third section, we shall study their behavior. More precisely, we shall prove that
u€ converges weakly to the unique element u €Uoa satisfying J(u) : min{J('u) :

u €l, l"a\ where J(u) : Ir@(u) 
-h)'d,'y, and y(o) is the unique solution of the

following problem:
on f,),

a t f : d 0 ,

The fourth section is devoted to investigate the system of optimality conditions
for the optimal controls of the problem (Q.), and to find the adjoint state p.
associated to the perturbed state g". In the section five, we shall establish the
strong convergence of the adjoint state p. to the adjoint state p associated to y

'l
l.
f iu ,@*ev, (u ) :u ,
v,(u) € v,

(2)

(Po) ( r )
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the solution of the system (Po)("), where u is the optimal control for the limit

problem.

In the papers [1] and 12], the authors considered the problern of finding

min{I.( 'u), u e Uoa},

where l'!o4 is any arbitrary finite dimensional subspace of Ifr (f ) , and

f  ,  f  f  0  \ 2 ,r , (u) :  
Jr fu,(r)  

_ zr) .  dt  *  
Jr \ r r , (u)  

_ z2) d1.

where 21, z2 are twofixed (decision) functions in .Lz(f), and yr(u) is a solution

of the system (P. )(r) In these papers, we have studied only the behavior of the

optimal controls and bhe corresponding states. We have not studied the adjoint

states and we have not found the systems of optimality conditions. So, our study

was very limited and the cost functional 1. was mole easy to deal with than -I.

taken here. In this paper, the class of admissible controls is more wide and the

methods developed here are more general than those used in the papers [1] and

l2]. Moreover, many results stated here remain valid for the optimal control

studied in these papers and the methods used here may be applied to the cost

functional 1..

2. Existence and lJniqueness of the State and of the optimal control

The space V will be endowed with the inner product (resp. the norm) given

by (2) For each € ) 0, and for each u € ,3(f), one can use Lax-Milgram

Theorern in the variational formulation for the problem (P.)(r), and conclude

that there exists a unique element Ae € V satisfying the problem (P.)('u). To

prove the existence of optimal controls, we need the foliowing proposition:

Proposition2.L. Letl ' loa be a closed conaer subset of L|F), uerifying (A1) or

(A2) or (fu). Then for each e> 0, we haue

(2.1.1) The mapp'ing S, : Lfi(l) -- V, u e g"(u) 'is 'injectiue, lin'ear and con-

t' inuous hau'ing a norrn l lS.l l < I.

(2.I.2) The linear mapp'ing R, : L3$) - I|(f), u + y,(u) ' is znject' iue and

compact hauing a norrn l ln. l l  < I ' .

(2.1.3) The map J,t L2oQ) -- 10,+ool, u + J,(u) is strictly conuen and weakly

I.s.c. ( ' i .e., lower semicont' inuous) on Lfi(l) '

(2.1.4) If U"a is not bounded, then for eaerA sequence (un) in Uoy, such that

l lo' l l ;r1r; + *oo,, one has J,(u.) ---+ *oo, when n + +oo'

Proof. (2.I.1) It is clear that the mappings ,9. and ,R. are linear and that ^9. is

injective. Let u (resp. tr) in I2(f). Then, by using the variational formulation

for the problem (P.)(r) (resp. (P.)(rr ')), we get

(u -  w)z d1,

I
J A

I
J f

V[y. (u) - y,(w)].Y z d,a t e 
lr{o,tr l  

- a,@)) z d1 :

Y z  € V . (4)



lrf, 
- w)((y,(u) - a,@)) dt : l la,@) - a,@)ll ', +, 

lrW,td 
- a,@)l'dt.

a  , \
^  ! a \ u ) :  u ,
ou
y,(u)  e V.
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We set z : A,(u) - A,(w) in (4), then we obtain

5e IuL2F) l l  <  l lE. (u) l l r ,1r1,  Yu € Z.

This completes the proof of our proposition.

By using the Cauchy Schwarz inequality and the trace theorem, we deduce from
the last ineoualitv that

l ls , . ( r )  -  a,(r) l lv  < I l l ,  -  wl l  p,s1. ( 5 )

This proves (2.1.1)  and a par t  of  (2.1.2) .

(2.1.2)  Let  u € r2( f )  be such that  R,(u) :a, (u) :0 at  f .  Then g.( 'u)  € f101(CI)
and is a soiution of the next problem:

-  La,@): o, on f , ) ,

at  f :  d f , ) ,

Using the variational formulation of this problem. we obtain /n lVV.(u)12 du :0.

This equality gives A,@) : 0. Thus R. _is injective. According to (3) and to
(2.1.1) we see that its norm is less than,\2. It remains to show that the mapping
R. is compact. Let B be a bounded subset of I2(f). Then {g.(o) : u € B} is
bounded in H1(Cr). Therefore (see [7, Theorem 4, p.143]) the set of its traces on
I is conditionaliy compact in the Hilbert space -L2(f).

(2.1.3) It is easy to prove that J. is strictly convex. It remains to show that J.
is weakly l.s.c. on f|(f) But this is a consequence of (2.I.2) and the fact that
the norm in any Hilbert space is weakly l.s.c.

(2.I.4) Let Z be the l inear space spanned in I2(f) by the set {o,, : n e N}.
Since Z has finite dimension and Ru is injective, then according to the closed
graph theorem, we can find a positive constant d. ) 0, such that the following
inequality holds true:

Mohamed Akkouchi

(6)

t

Now we can prove the existence and uniqueness of optimal controls

Theorem 2.2. Let I'loa be a closed and conuer subset 
"f 

L]oQ) uerifying (A1)
or (42) or (A3). Then for each e ) 0, there erists a un'ique element u, €Uoy,
sat is fy ing J"(u, ) :  min{J. (u) ;u e Uoa}

Proof. The uniqueness of u. results from the fact that J. is strictly convex.
The existence of u. is clear whenUo4 is bounded. When Uo4 is not bounded in
,3(f), then by a classical result of Lions (see [5]) in order to prove the existence
of optimal controls, it suffices to verify the two following conditions:
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(i) The map: ?r ---' J,(u) is weakly l.s.c. on the setUoa.
(ii) For every sequence (u,) inUoy, such that llr"llrrfl ------+ foo, then -I.(o,) -----+

+oo, when r, -----+ +@.
But all these conditions are consequences of Proposition 2.1

3. Convergence of the State ye ana.d, of the Optimal Control u.

Before stating the main result of this section, we need the following lemma:

Lemma 3.1.  (3.1.1)  For  euergu e LZQ), le ty(u)  betheun' ique solut ' ion of  the
problem (Po)(r). Then the l'inear mapping R : IA(f) ------ LAQ), t1 r--+ y(u) is
'inject'iue and compact hau'ing a nortn llrRll < A'.
(3.1.2) For euery u € L\(l), the state a,(u) conuerges in the spaceV to y(u),
when e -- 0.
(3.1.3) For euery e > 0, we haue

l la,(",) - afu,)l lv < e)l ly.(u.) l l  l ,,1p.r. (7)

Proof. (3.7.1) is obtained by the same methods used to prove (2.1.1) and (2.1.2)
of Proposition 2.1.

(3.1.2) We use the variational formulations of the problems (Po)(r), and (P.)(u).
Then we get after some computations that

l la|,) - a,@)llrv 3, I u,@)la@) - u,@)]dt.
J I

By rrsing Cauchy-Schwarz inequality, Proposition 2.1, and the inequality (3), we
obtain

l la@) -  a , (u) l lv  < e. l3 l lo l l r ,1r ; ,  Ve > 0.

(3.1.3) In a similar way one uses variational formulations of the problems
(Po)(r.), and (P.)(2.), together with the inequality (3) to obtain the needed
inequality. This completes the proof of our lemma. r

Now, we are ready to state and prove the main result of this section dealing
with convergence problems. More precisely, we have

Theorem 3.2. Let l,loa be a closed and conuer subset 
"f 

LZQ) uerifying (A1)
or (A2) or (A3), and let e el}, l l . Then

(3.2.1) The optimal control ue conuerges weakly in L2(l), as e ---+ 0, to the
un'ique element u € Uoy, 'ueri,fying J(") : min{J(r;);u e Uoa), where J(u) :

Irfu@) 
-h)'d,l, and, y(u) i,s the unique solution of the problem (Ps)(u). This

conuergence turns to be strong when (As) holds true.

(3.2.2) The state y,(u,) conuerges strongly in the space V, as e ---+ 0, to y(u) the
un'ique solution of the problem (Ps)(u)

19
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Proof. (i) If Uo6 is bounded then there exists a positive constant M > 0 such
that l lz.l l l ,1D < M for all e e]0, 11, and we can extract a subsequence (called
again (u.)) converging weakly to a unique element u e Uoa.

(ii) Suppose that Uoa is not bounded but verifying (A2) or (A3). Take and fix
an element w e Ltoa. Then for every € €]0, 1[, we have 0 < J,(u,) < J.(rr,). By
Proposition 2.I,we have lly.(tr,)l lr.,(r.) <.,\2lltull;r1r;. Thus we can find a positive
consta,nt C1 independent of e €]0,1[such that 0 < J,(u,) ( C1. This inequality
implies that the set (of traces) {y,(u"): 0 < e < 1} is bounded in I2(f). By
using (7) we deduce that the set (of traces) {y(",) : 0 < e < 1} is bounded in
, ' ( f ) .By (3.1. t )  o f  Lemma 3.1,  we conclude that  the set  {2.  :0  < e < 1}  must
be bounded in r2(f)" Therefore, we can extract a subsequence (called again
(2.)) converging weakly to a unique element u €Uo4.

(i i i) Let us denote u* the unique element inUo4 verifying J(u.): min{J(u) :

u €\,!oaj, where -/(u) : Ir@@) 
- h)'dl, and g(u) is the unique solution of the

problem (Po)(u).To simplify the notations, we set U"(u,): U.. \,{e wil l prove
that J.(u.) converges to J(u*) when e ------+ 0.

For evgry u e Uo6, we ca:r write the inequality J,(u,) < J.(u). FYom which
we deduce that

(8)

The equality in the right member of (8) is true since gru(o) con\,€rges strongly
in V to y(u) and consequently, the trace g.(u) on I converges strongly in the
Hilbert space -L2(f) to the trace of y(u).

Since gu is bounded in V we can find a subsequence (denoted again by y.)
converging weakly to an element z € V. It is no hard to see that we must have
z : A(u), where y(z) is the unique solution of the problem (Ps)(u). Now, by using
Theorem 4, p.143 of [7] , we can suppose that this subsequence converges also
strongly to y(u) in the space L'(l). Then according to the lower semicontinuity
of the norm in ,2(f), we can assert that

I igTf J,(u,) > J(u). (e)

Then we deduce that u: u* and that l im"-s J,(u,): J("): fr lA(") - hl 'dl.
We deduce that z. converges weakly to u* and that the net of traces (gu) con-
verges strongly in ,2(f) to the trace of y(u).

(iv) Now, Iet us show that the state gr. converges strongly in V to g(u), when
e ---+ 0. To this end, we start by writing the following inequalities:

l lv . (u,)  -  a (") l lv  < l la,@,) -  a @,) l lv  + l la @,) -  a (") l lv  .

The inequaiity (7) will imply that

l la, (" , )  -  y(" , ) l lv  < e) l ls .  (u.)  l l  ; ,1py.

(10)

/ 1  1 \

By using the variational forrnulations of the problems (Po)("") and (Ps)(z), we
obtain

l la@) - a@)l lv < J2M l l lv(",)  -  afu)l l" ' rr t) ' / ' (12)
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Now, by using the trace theorem and the inequality (7), wehave

l la @,) - v (")l l  u <rt < l la (",) - a, (u,) | | ;, 1py * l la,(",) - a (u) l l  u o
< ex2lly,(u,)ll1,1p; * lla,(",) - y(u)117"61. (13)

We conclude that y, converges strongly to y(u) in the space l/ when e ---+ 0. This
finisb.es the proof of our theorem

4. Adjoint State and System of Optimality Conditions

Let e ) 0. For every u e L\(l), we consider the following system:

where lfl designates the Lebesgue measure of f, and y.(,u) is the solution of the
system (P.)(r). one can use Lax-Milgram Theorem in the variational formula-
tion for the problem (Pl)(r), and co:rclude that it has a unique solution p, €V.
we shall see that p.(u) is an adjoint state for y.(u). To this end, it is sufficient
to prove the following proposition:

Proposition 4.1. Let e el},*a[. Then for each u,w € L\(l), we haue

[  , , ,  1

Jrwn,@)d1:  ,J ' " (u) (w) ,  ( I4)

where J'"(u) is the deriuatiue of the cost funct'ional J" at u, and J,,(u)(w) i,s i,ts
ualue on the uector w.

Proof. It is easy to see that the derivative mapping J',(u) of the cost functional
J, at u is given for every q € ,8(f) by

t ',(r)(q) :, 
lra,@)la,@) 

- hldt.

We have the following equalities:

Ir#,r,roo,@) dt : Irfu 
- ev,(w)lp,@) a1

: 
Irro,@) 

d^t -, 
lru,@)n,@) d,.r. (16)

Now, by using Green formula, we get

I, *,'''*"'(u) dt : l,u'ro frP'@) dt
-, I u,@)n.@) dt

J T

+ [a"@)lu,@)-h]dry.  (17)
J I

(15)
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By using the relations (16) and (17) we obtain

Mohamed Akkouchr,

l r 'n'@)or: Ira'@)la'@) 
- hldt,

-  LP" :0 ,  on  f ) ,
- Aar: 0, on f,),

a
, r , * e P , : U e - h  

a t l ,

a
^  l | u - l e A e : u e  a I ' 1 1
ou

Jrt, 
- u,lp,(u,) d1 ) o, vu € uo4,

p.  e Hl(o),  y.  € F/ l (o) ,  
l ro,or:  

0,  and 
l ru,at  

:  o.

(18)

which is the desired formula. I

Letl,!o6 be a closed and convex subset of Ifr(f ; verifying (A1) or (A2) or (A3),
and let e > 0. Then from Theorem4.I, we derive the following characterization
of the optimal control uu of the problem (Q.),

I lu - u,lp,(u,) d''t > 0, Yu € l,!a;.
J r -

Thus, the system of optimality conditions related to our problem can be written
in the following form:

5. Convergence of the Adjoint State p.

The purpose of this section is to prove the following theorem.

Theorem 5.1. Letl,loa be a closed and conuer subset 
"f 

LAQ) uerifying (A1) or
(A2) or (As), and let e el}, l l . Let u be the opt' imal control described by (3.2.1)
of Theorem 3.2. Then
(5.1.1) The adjoi,nt statep, conuerges strongly'inV, to the unique elementp(u) e
V, uerifyi,ng

on f),

- h  r  [ .r  g  l tno l '  (Po) . (u )
f

I P@) d^, : o'
J I

Thus, p(u) its the adjoi,nt state correspondi,ng to the state g(u) solut'ion of the
problem (Po)(" ) .
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(5.1.2) The opti,mal control u'is characterized by the followi,ng system of opti-
mali,tE cond'it'ions,

- Ap(z) : g, on {l j
- Ly(u) : g, on (l)

f intu):  v -  h atr ,

!a@l -  u atr ,
ou

lrW 
- ulp(u) dq ) o, Yu € t'!o4,

p(u) ef l ' (c,) ,  afu) €H'(o),  
l rn@)at 

:  0, anrt 
l ru{O 

d.y :0.

Proof . We know (see [7] for example) that we can find a positive constant p ] 0,
such that

ll,lod'o, * I,r'orf'' = rll,tvuP a,)''' ,r r, 1 1 4 \

Now, by using the variational formulations for the adjoint systems (P.)- (u.) and
(Po)-(r), we get after some computations the following inequality

f ^ f f
I lV(p" - p)l' d'n - -e I p,lp, - pldt + | la, - allp, - p)dt

Jn  J r  J r

where we have denote d p, '.: p,(u,) , and p :: p(u). With the help of the relation
(19), we obtain

I lr@, - dl2 da < epllp,l lp,sl l lp. - pllv + p2lla, - allvl lp, - pllv. (20)
J n '

The inequality (20) is equivalent to say that we have

lp, - Pllv < epllp,llp"6: -r p2lla, - allv .

To finish the proof of our theorem, it suffices to see that the net of traces p. is
bounded in 12(f). But this fact can be easily proved by using the relation (18).

I
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