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Abstract. In this paper we give a p-adic version of the Poisson—Jensen Formula for
p-adic holomorphic functions of several variables in the general case of critical points
of the forms (£1, ..., tm).

1. Introduction

Nevanlinna theory extends Picard’s theorem for meromorphic functions. There
are two main theorems which occupy a central place in Nevanlinna theory. The
First Main Theorem is just the reformulation of the Possoin—Jensen Formula for
meromorphic functions. The Second Main Theorem generalizes the classical Pi-
card’s theorem. Recently, Nevanlinna theory was extended to the p-adic case. In
[7], Ha Huy Khoai related non-Archimedean function theory in several variables
to the combinatorial geometry of higher dimensional analogues of the valuation
polygon. Rather than take this approach, Cherry and Ye ([4]) consider a mero-
morphic function in several variables and restrict it to a generic line through the
origin, and prove that the counting function for this one variable function does
not depend on the choice of line though the origin. They use this observation
to define counting functions as in Ha Huy Khoai’s one variable theory, and then
a several variable Poisson—Jensen Formula follows. However, their method gives
the formula only for the case of critical points of the forms (z,...,t).

In this paper by using the ideas in [7] and some arguments in {4] we give a
p-adic version of the Poisson—Jensen Formula for p-adic holomorphic functions
of several variables in the case of critical points of the forms (t1,...,%m).
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2. Height of p-Adic Holomorphic Functions of Several Variables

Let p be a prime number, Q, the field of p-adic numbers and C, the p-adic
completion of an algebraic closure of Q. The absolute value in Qj, is normalized
so that |p| = p~1. We further use the notation v(z) for the additive valuation on
C,, which extends ordp,.

We use the notations

Il(ﬂ) = (b1, s bm)y bm,iy(0) = (b1, - bi—1, b, biya, ..., b)),

bi) = (b1, ey bic1, big1;seens bin).

DT:{zECp:|z|§rr>0} D<T>:{z€Cp:|z|:r,r>0},
D={z€C,:|z| <1},

—~

Dy py = Dy, X -++ X Dy, where r(y) = (ri,...,rm) for r, € R,
D<1‘(m)> = D<'I‘1> X oo X D<Tm>,
D™ = D x ---x D the unit polydisc in C7' ,  [Flr.; = [Flirernrm)

Vi "‘N‘F}_(P“ oy Ym )y

M=+t m, 27 =2 27’", =T

log =log,, t;=—logr;, i=1,.

Let f be a non-zero holomorphic function in Dy, represented by a conver-
gent series

f= Z ay2, |z <rifori=1,...,m
[v|>0

Notice that the set of (r1,...,7m) € RT such that there exist z1,...,zm € Cp
with |z;| = r;,i =1,...,m, is dense in R7?. Therefore, without loss of generality
one can assume that Dy > # 0.

We define

|y = I|11¢_|i‘{ (el

Set vt = y1t1 + -+ - + Ymim
Then we have

lim (v(ay)+7t) =+ oco.

|v|—o0
Hence, there exists a 4 € N™ such that v(ay) + ¢ is minimal.
Definition 2.1. The height of the function f (Z(m)‘) 18 defined by

Hi(t(m) = mi ?).
#tem) = i (v(ay) +7)

We also use the notation
HY (t(m)) = —H(t(m))-
Write
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Set
If(t(m)) = {(')/1, L. 7'Ym) € N™: U(a’Y) +7t = Hf(t(m))}a

nf,f(t(m)) = min {')’i 31,3 Yis ey Ym) € If(t(m))},
n; ¢ (t(m)) = max {'y,- 23 (Y1, oYy -1 Ym) € If(t(m))},
ni,(0,0) = min {k: fix(%) £ 0},

vi(tamy) = D_ (05 (tamy) — nd p(tm)))-

=1

Call t(y, a critical point if vit(y) # 0.

Theorem 2.2. Let f(z) be a holomorphic function on D,. Assume that f is
not identically zero. Then there exists a polynomial

9(z) =bo+brz+ - +by2", degg = n; (t),t = —log,r,

and a holomorphic function h =1+ Y c,2™ on D, such that
n=1
1) f(z) = g(2)h(2),
f(2) just has n% (t) zeros in Dy,

2) f
3) n;(t) — nf( ) is equal to the number of zeros of f at v(z) =t,
4) h has no zeros in D,.

For the proof, see Weierstrass Preparation Theorem [5].

Let f = Z ay2” be a non-zero entire function on C;'. Choose y = y(n)
[v1=0
such that
|yl = max{[| : |ay| = |fla ...}
The set of 2z in C, with |2| < 1 forms a closed subring of C,. We denote this
subring by O (called the ring of integers of C,), and the set of z with |z] < 1
forms a maximal ideal I in @ . We denote the residue class field (9/ I by C

Note that since C, is algebraically closed, so is Cp, and in particular C cannot
be a finite field.

Given an element w in O, we denote its equivalence class in (/3:, by w.
Define f by

——

o~ e a.
- S En
a
lyl=0 ¥
Since f is entire, ’%‘ < 1 for all but finitely many ~, and thus fis a polynomial
ay

in m variables with coefficients in C,. Since
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fis not the zero polynomial.

o
Lemma 2.3. Let f,(ztm)) = ). a327,s = 1,...,q, be q non-zero entire
|v|=0
functions on C7'. Then for any Dy, in C3' (D<r,,,> # 0) there ewists
U = U(m) € Dr,, such that
| fs(uemy)| = |fs| =1,...,q

T(m)’

Proof. First we prove that if () = (1,..., 1), then there exists w = W(m) € D™
such that )

|fs(w)| = . 1|11.»|D; |a,y| Si= i 15 gt (2.1)

For each s = 1,...,q, choose ys = (y3,...,y5,) such that

lys| = max{|y| : lafy| = |f|(1,...,1)}-

Set b
M={fs,s=1,...,q}.

~ g .
Since f, is not the zero polynomial, so is [] fs.
= s=1

q
Let w = w(m) € D™ be such that @ is not a solution of [] f.

' &#=1
Set

folw) =b,, s=1,...,q.
Ay,
We have - —
bs = fs(W).
Since @ is not a solution of all fs,
bs ¢ I.
Thus
.fS(w) ) =7
ay '
Hence, |, (w)| = |ay, |
Now let z1,...,2Zm € Cp such that |z;| = r;.

Consider the following transformations of C*:

o(Z(m)) = (@121, - - - ; Tm2Zm).
Set
T = (Zasm: - wBrmg)s
We have
Sﬂ(Dm) = DT(m)v
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and I

fso @(z(m)) = Z (aerI:AY)Z'Y

|v|=0

are non-zero entire functions on C;,".

By (2.1) there exists w = wm) such that

[fsowp(w)| = max la3a7] = max lal|lm|™ - |om|™
= Jeax_|afr” =], -
Set u = @(w). Then u € Dy, , and |fs(u)| = |fs|r(m), s=1,...,q. n
Lemma 2.4. Let fa(z(m),s = 1,2,...,4, be ¢ non-zero holomorphic functions

on Dr(m). Then there exists u = U(m) € Dr(m) such that

|fs(u)] = Ifslr(m),s = 1x22%..,q.

Proof. Let
oo
fo= 2 52"
|v|=0
For each s =1,2,...,q, we set
ks = { Y| | e }
H OSIIIE/?i(oo 71 | 7|T |fs|r(m>
Then

s —
2= E az?, s=1,...,q,
0<|yI<ks
are non-zero entire functions on C;”.

By Lemma 2.3, there exists u(n) = (u1,.. S Um) € DT(m) with l“i| = 7; such

that
| Ps(umy)| = IPSIT(M)’ S e Mo
Moreover,
|Psl,. = \fsl,.., |Ps(ugmy)| = |Fs(uem))], s=1,-., 4.
Thus
|Fe(um))| = fslrgmy, s=1,-- -, 4. u

As an immediate consequence of Lemma 2.4 we have

Corollary 2.5. Let f(z(m)) be a non-zero holomorphic function on Dy, . Then

 Jaax |f (@) = [£lrmy-

T(m)
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3. p-Adic Poisson—Jensen Formula in Several Variables

Let f be a non-zero holomorphic function on D

T(m)*
Write
2 ————
f(z(m)) = Z fi,k(zi)zf, 1=1,2,...,m.
k=0
Let

e

’I’Li’f(0,0) = mm{k 5 fi,k(zi) ;—f 0}

For a fixed ¢ (i=1,...,m) we set for simplicity

ni£(0,0) = £, k1 =n; ((tam)), k2 =1 (Em))-

Then there exist multi-indices v = (y1,---,%,...,Ym) € If(t(m)) and
p= (s ooy iy s tm) € If(t(m)) such that y; = ki, p; = ka.
We consider the following holomorphic functions on D

Felzmy) = fielz)2,
Fin(2my) = fia (2)252,
Fra(Zmy) = Fia (20202,
The functions are not identically zero.
Set

Ui = {’LL = U(m) € Dr(m) g |f£(u)| = |f£|7'(m)7 |f(u)| = Iflr‘(m)a
| fie (w)] = lfk1|1"(m)> | fiez (u)| = |fk2|7‘(m)}’

T(m)

wherei=1,...,m.
By Lemma 2.4, U; is a non-empty set. For each u € U, set

fiul(z) = vak(_::)zfu z=gj€ Drr-
k=0

The following theorem shows that we can use the Weierstrass Preparation
Theorem [5] to count zeros by s licing with a generic line through the point u.

Theorem 3.1. Let f(z(m)) be a holomorphic function on Dy, . Assume that
f(2(m)) is not identically zero. Then for each i =1,...,m, and for all u € Uj,
we have
1) Hy(tomy) = Hy, o (t0),
2) n; ;(t(m)) is equal to the number of zeros of f; in Dr,,
3) ng;(tm)) — i ¢(tm)) s equal to the number of zeros of fi . at v(2) =t;.
Proof. Set k3 =ny (ti),ks =nj (t:). Since

| flrmy = lay|r]* O O L P I

= |fk1|1”(m) = |fk21r(m) = lf(u(m))|a
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we obtain

—

| fisks Wa)lrF? = | Flrmy = |fika (wi)Ir? = |f ().
On the other hand, we have

|fi,kz(ui)|7'f2 = |fi,k1(u’i)|r1llcl < Ifi,ul’l‘i < |fl7'(m)'
Hence . e
| fiea (i)l = | fiulre = | fia () 2.

From this it follows that k1 < k3 and k4 < kz. Now we consider j such that

|fi.5 @a)lr] = finulr-
Then there exists = (71, .., Mis - - - » Mm) With 7; = j such that
|f ()| = 1 fiu(wa)] € Vfiulre = 1 (wi)lrd

< laglr™ < |f|r§m)-
Since
|f(u(m))| = lfl'r‘(m)7
we have
laylr™ = |£lrmy-

Hence k3 < j < k1. From this it follows that k4 > k2 and k3 < k;. Since k; < k3
and kg > kg, 50 ko = k4 and k; = k3. By Lemma 2.4 and Theorem 2.2, we
see that Hy(t(,y) = Hy, (L), and '”--.'__f“tmlj is equal to the mumber of zeros ol
fi in Dy, and ni_’f(t(m)) - n;-ff (t(m)) is equal to the number of zeros of f;, at
v(z) = t;.

Theorem 3.1 is proved. ™

For each i = 1,...,m, from Theorem 3.1 we see that n; (0,0) = ny, ,(0,0)
for all uw € U;.

Let f be a non-zero holomorphic function: on D, . Define n; ¢(0,7(m)) to
be the number of zeros with absolute value < 7; of the one-variable function

f i,u(z)-
Theorem 3.1 tells us that

n4,£(0,7(my) = Ny £ (E(m))-

For a an element of C, and f a holomorphic function on Dy, whi;:h is not
identically equal to a, define
N4, £ (@, T(m)) = N, f—a(0,7(m))> M4,7(@,0) =74,54(0,0), i=1,...,m.

We fix real numbers py,...,0m With0 < p; <7, i=1,...,m.
For each z € R, we set

A’L(x) = (plv'"ap’i—lamari+la"'7rm)7 1= lyam
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Define the counting function N¢(a,t(m)) by

Tk
= n,f(a, Ax(z))
Ni(a,tm)) = B Z/ e da.
k=1
Pk

Ifa = 0, then set Nf(t(m)) = Nf(O, t(m)).
For each t € R, set
T;(t) = (c1,- -+ Cic1, b, tigt, . .. s tm)s
where

¢ =—logp;,i=1,...,m.

Theorem 3.2. (p-adic Poisson-Jensen Formula in several variables) Let f be a
non-zero holomorphic function on Dy, - Then

H}F(t{m)} i H}F(C{-m.)_} - J’\rf(t(m.})-
Proof. Let o
= Z flk(;:}z?
k=0
Set

E = nl,f(O, 0), a = log ’f1,e(.31)|7:;,

T1

= i/nl,f(O’Al(z)) _de+flogr1,
Inp x
0
1 Py (0, 41 (2)) — €
M=t /m,f(..a 1(2)) — dz 4 £log 1,
Inp, T
0

1
n Ap(x)) = ¢
M2=i/n1,f(ﬂ. 1 () 'd:v+f,logr—1,
Inp T P1
P1

v jnl,fm,Al(z)) s

3 =
x

" lnp
P1

D={Ti(t): (nj;oTu(t) —nf;oTi(t)) #0, t>t;}.
We will prove
HY (t(m)) — Hf o Ta(c1) = Ms. (3.1)
To show (3.1) first we prove the following
H;’(t(m)) —a=M. (3.2)
Case 1. ¢ =0.
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Then

:L/lnl,f(gyAl(w))dw_
Inp T
0

If T =0, then HY (t(m)) = a and M = 0. Therefore
H}"(t(m)) —a=M.

If T # 0, then I is a finite set. Suppose that I' contains n elements
' =Ty (W),

y(n> =T (t(")),

where t; < ¢t < t@ < ... <M,
Set b; = p‘tm, i=12,...,n, 8 = n1,7(0,7(m), 51 = n1,£(0, A1 (b2)), a1 =

|frs(21)l, a2 = log |f|r(m,1)(b1)’ a3 = log |f|r(m,1)(b2)> as = |fr, (21 )5
Then 0 < by < bp_1 <+ <by <rp.
We will prove (3.2) by induction on n.
Casen = 1.
If by = rq, then nq £(0, A1(z)) =0, 0 < = < r;. Moreover, by the continuity
of H;’ o Ti(t), we obtain (3.2).
Consider b1 < r1. We have

M = s(logry —logby) =log(air]) — log(a1b3).
Since by < ry and n =1,
H}"(t(m)) = log(airy).

Furthermore, T} (t) ¢ T with ¢ > t() and H7 oTi(t) is continuous.
Thus
log (a1b3) = a.

Hence (3.2) follows. So (3.2) is proved in this case.

Now we will prove (3.2) for any n.
Case by < 71.

Then 0 < by < bp_q1--- < by <7 and t; <t < ... < t™  Apply the
induction hypothesis,

by
i / nl,f(OaAl(w))_dI sy Rl
Inp z S

0

Thus
1
1 0,A
M=a—a+ — .1 (0, 41(2)) l(x))dx.

Inp T
b
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On the other hand,

1 /”nl,f(o,Al(x))d

m . w;s(logrl—logbl)

by
= log(a1r}) — log(a1b?),
az = log(a,by). (3.3)

Since T1(t) ¢ I with ¢; <t < ¢,

Hy (t(my) = log(airy). " (3.4)
By (3.3) and (3.4),
M= H_;L(t(m)) - a.
Case bl =T;.

Then 0 < by, < --- <bp < by =7y and t; =t < ... < ¢(0),
Apply the induction hypothesis,

b
i ] ny, (0, AI(I}}dI te o
Inp x ' sk

0

Thus
oy
M=a3_a+_/wd$, (3.5)
Inp T
b2

Moreover, ny,£(0, A1 (z)) = s; with by < z < by, and

by _
%/ m1,7(0 A (#)) dz = s1(logby — logba) = log (a4b3*) — log (asbst),
£ .
p &
a3 = log (a4b3').
Since Ty (t) ¢ T with t() <t < (¥, and by the continuity of Hf o T(2),
Hf (tm) = log (asb'). (3.6)
From (3.5) and (3.6), we obtain
M = Hf (tm) — a.

Case £ # 0.
Then f = fi f> with f; = 2§
We have

N1, f» (0,0) = 0,
n1,£(0,0) = £, n1,£(0, A1(z)) = n1,5,(0, A1 (z)) + ¢,
H{f (tm)) = HF, (tomy) + Hf, (b(m)) = Llogry + H, (t(my).
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By case £ = 0,

1

Inp z
0

Thus
M = Hf, (t(m)) — a + Llogr = Hf (t(m)) — a-
Similarly we obtain
My = HJ}" oTi(c1) — a. (3.7)
‘We have
M = M, + My, Ms= M.
Apply (3.2) and (3.7),
Ms=M-M = H}"(t(m)) - H;' oTy(cy).
Similarly we have

i

1 ny (0, A1 (z
HP_ OTi_l(ci_1) - H]T OTi(Ci) = m / Lml(ﬁdz
Pi

for i=2,...,m. (3.8)

Apply (3.8),

H (tmy) — Hf o T(em) = Hf (temy) — Hf o Ta(er) + Hf o Ta(er) —
_“E.H?»o Tm—l(cm—l) - H;_ o Tm(cm)a

we obtain
H} (t(my) — Hf (cm)) = N (tim))- 2
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