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Abstract. New first-order necessary optimality conditions with Lagrange multipliers

for quasidifierentiable optimization with equality and inequality constraints are pro-

posed. Kuhn-T\rcker sufficient optimality conditions are also developed. Two kinds of

difierences for two convex compact sets, proposed by Demyanov and by Rubinov and

Akhundov, respectively, are used.

1. Introduction

Quasidifferential calculus, developed by Demyanov and Rubinov, plays an im-

portant role in nonsmooth analysis and optimization. Since it is closely related to

the classical directional derivative, quasidifferential could be used to describe the

behavior of extreme point more strongly, and could be easily calculated in some

cases. As we know, the early necessary optimality conditions in geometric form

for quasidifferentiable optimization were proposed by Polyakova 115] and Shapiro

[18]. The versions with Lagrange multipliers for the inequality constrained prob-

lem were initially developed by Eppler and Luderer [7] and further investigated

by Gao [8] and Luderer [13]. For the equality and inequality constrained case,

optimality conditions with Lagrange multipliers were studied by Gao [9] and Yin

and Zhang [19]. The optimality conditions in 19] are presented by means of the

Demyanov difference of subdifferential and minus superdifferential, where the

subdifferential and the superdifferential is in the sense of quasidifferential calcu-

Ius. It is well known that the optimality conditions with Lagrange multipliers

have many advantages crer those of geometric form.

The aim of this paper is to explore optimality conditions with Lagrange

multipliers for quasidifferentiable optimization with equality and inequality con-
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straints. Three necessary optimality conditions, which improve, in some sense,
those given in [9], and corresponding sufficient optimality conditions are pro-
posed. Two kinds of differences of two convex compact sets, proposed by De-
myanov 13] and by Rubinov and Akhundov [17], respectively, a,re used" The
remainder of this paper is organized as follows: In Sec. 2, preliminaries on qua-
sidifferential calculus are recalled. In Sec. 3, three necessary optimality condi-
tions are proposed. In Sec. 4, Kuhn Tucker sufficient optimality conditions are
developed.

2. Preliminaries

According to the definition in [5], / :lR"' - IR is called quasidifferentiable at
a point r € lR' (in the sense of Demyanov and Rubinov), if it is directionally
differentiable at r, i.e., the directional derivative

f '(r;d):,1,,T. 
'1Vt" 

*td.) - f (r)1, d e IR' ( 2 . 1 )

is well-defined; moreover, the function f'(r;.) is representable as the'difference
of two sublinear functions. In other words, there exists a pair of convex compact
sets d/ ( r ) ,0 f  ( r )  c  lR. 'such that

f 
'(r; d) : max . uT d, + min wT d,, d, < Rn

u€d l ( r )  wc6 [gS
(2  2 )

The pair of sets Df (") : LAf @),Af @)l is called a quasidifferential of f at r,
0f(r) and 0f(r) are called a subdifferential and a superdifierential, respectively.

/ is said to be uniformly directionally differentiable at r,if the convergence
in (2.1) holds uniformly with respect to an-r unit vector d. It was shown that
the directional differentiability is equivalent to the uniformly directional differ-
entiability for a locally Lipschitzian function [5]. Obviously, the quasidifierential
is not uniquely defined. Actually, suppose that [t/, V] is a quasidifferential of /
at r, then for any convex compact set S C IR.', the pair of sets lI/ + ,S, I/ - ^g]
is also a quasidifferential of f at x.. The class of quasidifferentiable functions
contains convex, concave and differentiable functions, but also corrvex-concave,
maximum and other functions. It even contains some functions, which are not
locally Lipschitzian.

Let / : IR' -- JR be locally Lipschitzian in a neighborhood of r. By the
definition in [1], the (Clarke) generalized gradient of f at z, denoted by \of @),
is of the form:

)ct f  ( r ) :  co{z € R'  I  u :  
, l l \ ,Y f  ( r . ) ,Y f  ( r . )  ex is ts ,  rn + r } ,

where "co" denotes convex hull.
In what follows, we review some of related concepts from 15, Il, 16, l7l.
Let ^9 C lR' be a convex compact set.

Ps(r) : ma*lrTtr, r € lRt
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is called the support function of the set ,9. It is true that Ps is a convex function
on IR' with

7Ps(r) : {u e S I ur r : Ps(r)}, (2 3)

particularly APs(0) : ^9, where "d" denotes subdifferential in the sense of convex
analysis. From (2.3), it follows that Ps is differentiable at z if and only if
the right hand side of (2.3) is a singleton. Given a point r € lR', if the set

{z e ^9 | urr : Ps@)} is a singleton, denoted by {ro}, where zs € ^9, then
v P5@) :  us.

A set 7 C IR' is called of full measure (with respect to IR'), if IR" \7 is a set
of measure zero. Let U,V C IR' be two convex compact sets and 7 c lR' be a
full measure set such that their support functions P11 and Py are differentiable
at every point r e ?. The set (J-V, called the Demyanov difference of [/ and
V, is defined as the following:

U - V :  c l c o { V P y ( r )  - Y P v ( r )  l r  e  T } , (2.4)

where "cl" and "co" denote closure and convex hull, respectively. It has been
shown that U-V does not depend on the specific choice of the set ?, so it is
well-defined.

The Demyanov difference was irrplicitly introduced by Demyanov [3] in order
to establish a relation between quasidifferential and the generalized gradient.
According to [5,17], the following relation holds:

nct f 
' (r; illa:o : 0 f (r) - (-E f (")) (2 .5 )

Therefore, if both lUt,Vtl and lU2,V2] are quasidifferentials of / at r, then
Ut-(-Vr):Uz-(-Vz). That is to say the set Af @)-(-6f(r)) is independent
from the specific choice of the quasidifferential.

Let ^9 be a set in IR'. Given a point z € IR', put

G"(S) :  {u € S I  ur r  :  Ps(r)} ,

C "(S) 
: {u e S I ur r: tLtF "t"}

The set G"(S) ana d,(S) are called the max-face and min-face of the set ,9
generated by e, respectively.

Let I/ and V be convex compact sets, the operation ) of U and V, proposed
by Rubinov and Akhundov [17], is defined by

u-v : crco lJ lG"(u) - G"(v)1. (2 .6 )

"*o

We call U -V the Rubinov difference of U and V .
Let T C R' , we say the set 7 has the property (t) with respect to the

p-air of sets [[/,V], if the measure of the set R'\? is zero, and both G"(U) and

G"(V) for any r €T arc singletons.

i l l
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Let M (r) denote a family of functions / defined on an open set X C lRn
w i t h r € X s a t i s f y i n g :

(a) / is locally Lipschitzian in a neighborhood of r, denoted by l/(r,d).
(b) / is quasidifferentiable at r.
(c) There exist a subset Q c Vt of full measure (with respect to l[(z,d)),

where VJ is the set of the point E € l/(r, d) where the gradient of / exists
at gr, and a set T possessing the property (t) with respect to the pair of sets

lAf @), A f @)l such that the relation

implies

g k + g ,  t x - 0 * ,  f r k : r - f t n g n e  Q ,  g e T ,

Y f (rn) --+ Arg ryu* .uT g * Arg min wT g.
ueo  t  \ t  t  ueo t  @)

The following relation between quasidifferential and the generalized gradient
was obtained by Rubinov and Akhundov [17], see also [5]:

af @)-?af(")) c )ctf (r),  Yf e M(r). (2.7)

Along with M(r),let us consider the function family -[Z(r) consisting of
functions having the properties (a), (b) and the following property (d):

(d) One can find: (1) a subset Q c N(r,d) of full measure (with respect to
N(z,d)) at every point gr of which the gradient Vf (A) exists; (2) a quasidiffer-
ential [0/(z),Af @)] of the function / at the point r such that the relations

gk + g,  f , ,  -  0+,  r t  :  t r  l tngx e Q,  Vf( rp)  - -  u

i m p l y u  € G s ( U ) + S r { V ) .

It is true that M@) c M(r). Any one of families M@) ana M(r) contains
convex, concave functions and maximum of smooth functions. If ,f i ,...,f-
belong to M(r)(or M(")), then maxl<i <p fa and SUr(.),. . , /-( )) sti l l  belong

to M(r) (or M(r)), where g is continuously differentiable on lR-. The relation
below holds:

ouf (") c Af @):(-6f (")), Yf e M(r); (2 8)

moreover,

af @)-(-6f (")) c \uf (") c Af @):(-6f (")), vf .eM@).

Now, let us consider the following problem:

(Pr) minimize fo(r),

sub jec t  t o  f i ( r )  I  0 ,  ' i  : 7 , .  .  .  ,m ,
h i @ )  : 0 ,  i  :  r , . . .  , p ,

where / i ,  h , i  :  IR '  + IR.  fo l i :0 , I , .  . .  j rn ,  j  :1 , . .  .  )p  are quasid i f ferent iable.
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Given a point I € JR', denote

h, ( r * ) :  0 ,  I  (  i  <n ,  f f i l+  ao ,  a -  ̂ so) ,

t@)  :  {E  e  R . '  I  h , , ( r ; a )  :  0 ,  j  :  r , . . . , p } .

The following two hypotheses for hi (j : 7,. . . ,p) at a point will be used to
establish necessary optimality conditions for the problem (P1).

Hypothesis 1. f(r) : t@).
Hypothesis 2. For every y € .t(n), both Go(Ofu (r)) and Go16t i1"17 are
singletons, denoted by Go@hi@)) : {oi@,E)} and Go16n,1"75 : {bi@,A)},
respect ive ly .  Moreover,  vectors ar( r ,y)  *  fu(n,A) , . . .  ,oo(* ,A)  I  bo(r ,g)  are
linearly independent.

It is easy to see that both Go@hi@D : {aj(r,gr)} and Go16ntp71 :

{bi@,y)} imply that functions maxueohi@)uTy and, min.eAnrl"; wTy are dif-
ferentiable at gr with

V '  m a x  u T A  :  a i ( r , A ) ,  i  : 1 , .  .  .  , Pv u € 7 h i @ )  u  J \  1 '

and

V a  l q i n  w T A : b i @ , A ) ,  j : I , . . . , p .
ueOh i@)

Thus, the function h'r(r;.) is differentiable at 3r with

V o h ' i ( r ; y )  :  a i ( r , y )  +  b 1 @ , y ) ,  i  :  r , . . . , p .

On the other  hand,  the fact  that  a1(n,y)  + b1(r ,A) , . . .  ,ar ( r ,A)  *  bo(r ,y)  are
linearly independent implies thatp ( n and Jacobian of (ht (r;U),... ,IL@;AD,
with g as variable is of full rank. Hypotheses 1 and 2 were initially proposed
to derive the optimality conditions of geometric form for the problem (Pr) by
Polyakova [15] and Shapiro [18], respectively.

We now give some notations, which will be often used later on. Denote

I ( r )  :  { t  I  f n ( " )  : 0 , ' i : 7 , . . .  , m } ,  ( 2 . 9 )

denote U+V for U-(-V) and denote UiV for U-(-V).

Proposition 2.f- [9]. Suppose thati is a m'inimizer to the problem (P1), fa for
i:1,... ,ff i  are un'iformly d,irectionally differentiable ati and at least one of
Hypothesis I and Hgpothes,is 2 holds. Denote
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f(z) : 
{, 

a U" | :^ > 0, 11" --+ r, 11, f r,

f (") : max{/s(r) - fa(r), fi l") | i € I (i)}



(Pz) minimize f '(r;A),
s u b j e c t  t o  h ' r ( r ; y )  : 0 ,  j  : 7 , . . .  , p .

Proposition 2.2 l9l. Suppose that r € lR' is a m'in'im'izer to the problem (Pr),

fi for i, : 0, 1, . .. )n'L and hi for j : I,. . . ,p are un'iformly d'irect'ionalla drf-
ferentiable at s and at least one of Hypothesi,s I and Hypothesis 2 holds at r.
Then ,  t he re  e t i s t  sca la rs  )a  )  0 ,  ' i : 0 ,L , . . . . n ' t , ,  p i ,  j : L , . . . , p ,  no t  a l l  ze ro ,
such that

60

Then y: 0 is a m'in'imizer to the follow'ing problern:

i :o ; - 1

\ t f { n ) : 0 ,  i : 1 , . . . , r n ,
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(2.10)

(2 .11)

(2.r2)

(2 .13)

(2.14)

(2 .15)

Proposition 2.3 [9]. ose that o € lR' 'is a m,inim'izer to the problem (P1),
and, hi for j : L,... ,p are locally Li,pschi,tzian i,n a nei,ghborhood of n. Then,
for  any set  of  wi  e } f i ( r ) ,  i  :0 ,  1, . . .  ,m,  there ef is t  scalars, \a( tu)  > 0,
' i  :0 ,L, .  .  .  1n '1,  t t i (w) ,  j  :  r , . .  . .  ,p ,  not  a l l  zero,  such that

n1 P

i :o  j : t

) ,a (w) f i@)  :0 ,  ' i  :  L , .  . .  , rn ,

where )q(w), ' i  :  I , .  .  .  lnx and pi(w),  j  :  1, .  . .  ,p depend on the specif ic cho' ice
o f  w : ( * 0 , * r , . . . , w ^ ) .

Proposition 2.a lL9]. Suppose thatT € IR' 'is o m'ininizer to the problem (P),
and f i  fo r i :0 ,  1 , . . .  ,n 'L  andh i  fo r  j : I , . . .1p  areun i fo r rn ly  d , i , rec t i ,ona l l y

0 f4E) ,  i  :  0 ,1 , . . .  ,  m,  there  ex i ,s t  sca la rs  ) r ( r )  >  0 ,  , i  :0 ,  1 , . . .  ,m,  F j (w) ,
j : L,. . . ,P, not all zero' such that

m p

i=o j :L

) J t ( n ) : 0 ,  ' i : 7 , . . .  
, f f i .

0 . i ^t(w)(Qft(n) +.?,,i) +f ui@)(Qhi@) +6hi@)),

where ) .a(w),  i  :  1 , . . . ,n 'L  and p j (w) ,  j  :  1 , . . . ,p  depend on the spec, i f ic  choice
o f  w : ( . 0 , r t , . . . , w * ) .

3. Necessary Optimality Conditions

In this section, three necessary optimality conditions with Lagrange multipliers
for the problem (P1) are developed.
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Theorem 3.L. Suppose that r € IR' is a nx'in'irn'izer to the problem (P1), and'

f i f o r i , : 0 ,  1 , . . . , m a n d , h i f o r j : 7 , . . . , p a r e u n ' i f o r m l y d ' i r e c t ' i o n a l l y d i , f -

ferent'iable at r and_at least one of Hypotheses 7 and 2 holds at r. Then,

for  any set  of  wi  e Af i@), ' i  :  0 ,1, . . '  ,  m,  there er is t  scalars )a( 'u . ' )  > 0 ' i  :

0 ,  1 , . . .  , m , p j ( w ) ,  j  
-  1 , . .  . , p ,  n o t  a l l  z e r o ,  s u c h t h a t

m P

0 € t  \ i (w)(Qf,(n) +.0) +lui@)(ohi(r)+ahi@)),  (3.1)
i :0 j : r

\ t . f , ( i )  :  0 ,  i  :  I , . . . , ' t r 1 ' , (3 .2 )

where  \ i (w ) ,  i : 1 , . . .  , f f i  and  p , i (w ) ,  i  : 1 , . .  -  , p  depend  on  the  spec ' i f i c  cho ' i ce

o f  w : ( r o , r t , . . . , w * ) .

Proof. It follows from Proposition 2.1 that y: 0 is a minimizer to the problem

(P2). Noting

f' (e; y) : max{f:(d; y) | i e {0} U /(t)},

one has that (y, z) :0 is a minimizer to the following problem:

(Pr) minimize z,

subject  to  f tn@;y)  -  z  < 0,  r l  €  {0}  U 1(u) ,

t { t ( r ; u )  :  0 ,  i  :  I , . . ' , P ,

where g € IR', z € IR, (y, z) € R.'+1. By virtue of. (2.2), for any set of tr.rl e Af i@),
i :0 ,1, .  .  .  , f f i ,  the fo l lowing re lat ion holds:

'&  ) "aa 'Tu< f i@;a) '

Hence, for any set of tla e Afi@), 'i : 0,!, . . . ,ffi, (y, z) is a minimizer of the

following problem:

(P+) minimize z,

subject to  -T?T- ,ura* ,Ta<0,  r ;  e  {0}Uf(u)-  
ue1 f  t ( i )

n ' , ( o ; u )  :  o ,  i  :  1 , . . . , P '

Evidently, all corresponding functions in (Pa) with (3r, z) € lRn+l as variable,

are locally Lipschitzian. Hence, from the Flitz John necessary optimality con-

dition in terms of the generalized gradient for (Pa) [1, Th.6.1.1], it follows that

the re  ex i s t  sca la rs  f ( . )  >  0 , , \ i (To )  >  0 , i  €  {0 }U I ( r ) ,  p i (w ) , i  : 1 , . . .  , p ,  no t

all zero, such that

0 e I(to)Ocr z 1.,."7:o -t 
t ),;(u.')Ocr(

i € {0 }u1( ' )
\?x_.ura + rTa) l(a.a:o

ueg l i \ I  )

\ -  r l / -- f  
I  Ui \w )dc1n' i \ r i  U )  l (s ,z) :0,
j : I

(3.3)
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where 0 6 pn+l. By virtue of (2.3), (2.5) and (3.3), we have that

o e . l(tu)(0, r)r + I ^r(w)(Af"@) + t,z, -t ;
i € {0 }u1 ( t )

p

+\u i@)(ahi@)+6hi ( t ) ,0)  (3  4)
; -  t

This leads to

p

0 € t ^r@)@ f lr) + .o) +l ui@)(Ah j@)+Ahj@)), (3.5)
i € {o }ur ( t )  j : r

.r1r; : D Ir(.). (3.6)
i € {0 }u1 ( t )

The re lat ion (3.6)  impl ies that  ) i ( 'u)  for ,  €  {0}U1(t )  and p,(w) for  j :

L , . . . ,p  are not  a l l  zero.  (Otherwise,  i t  fo l lows f rom (3.6)  that , \ ( t r )  :0 ,  thus
, \ ( t r . ' ) , ) i ( t r ' ) , z e  { 0 } U 1 ( u ) ,  t l j ( w ) , j : I , . . . 1 p a r e a l l z e r o . )  T a k i n g l i ( u . ' )  : 0

for  r i  e  {1, . . .  , rn}  \1(z) ,  we obta in (3.1)  and (3.2) .  This  completes the proof  of
the theorem. I

If hi € M(z) for j : 1,. . . ,p, the relation (3.1) yields the relation (2.12) be-
cause of Eh, (fl+64@7 c Aohj(r). This shows us that the optimality condition
(3.1) is sharper than the one given in (2.L2) in the case fu e M(n).

In the light of the notion of the fi.rst order approximation and a related
optimality condition, introduced by Ioffe 112], we can develop another optimality
condition for the problem (P1).

Given /: IR'---+ JR, we say g:IR'-+ lR. to be a first order approximation for

f at r € 1R', provided that

s(ty) :  ts(s), vt ) 0, s € IRn (3.7)

and .l

Iim sup ;lf (" + ta) - f (") - tg(a)l ( 0, Vy e lR". (3.8)
t + 0 *  L

Proposition 3.1. 112, Th. 3] Suppose that r i,s a m'in'im'izer to the proble* (Pz),

and hi Jor j :1,"' ,p are locally L'ipsch'itzian'in a neighborhood of r and each
gi is a conuer and cont'inuous first order approrimation for fi at r. Then there
en ' i s t  sca la rs  ) i  )  0 , ' i : 0 , I , " '  , f f i ,  t - L j ,  j : I , " '  ,P ,  no t  a l l  ze ro ,  such tha t

m P

o . t ),;osi(o) +lutocthi@), (3.e)
i :o  j - -7

\ " f t @ )  : 0 ,  ' i : 1 , . . .  , m .  ( 3 . 1 0 )
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We now present an optimality condition for the problem (P1) without as-

sumptions except for the Lipschitzian property of hr.

Theorem 3.2. Suppose thati € IR' is a m'inim'izer to the problern (Pr), hi for
j : 1,. . . )n1, are locally Lipsch'itzian ,in a ne,ighborhood of r Then, there erist

sca la rs , \ i  )  0 , ' i  :  0 , \ , . . .  ) r n ,  L I j ,  i  :  I , . . . ,P ,  no t  a l l  ze ro ,  such  th ,a t

o. 
I  

^t@f{d+afr@D +DHia",t  i {n),  (3'11)

\ t f i ( " ) : 0 ,  i : 1 , . ' . , r , 1 '  ( 3 ' 1 2 )

Proof. Let 91 be the support function of the set Aflr)+6k(i), i.e.,

g i (Y) :  max-  uTY,  i :  o ,  1 ,  "  '  im '
u€Qk@)+af  t ( i )

We next proceed to show fl@;y) < g6(y)' Let

Tr:  {a € R' I  Go(Qf o(z)) ,  Go167n1n11are singletons},  i  :  r , .  .  .  , f f i -  (3.13)

Denote

co(Afo@)) :  {u " (y ) } ,  Vy  €T i ,

es@f t ( i ) ) :  { * r . (y ) } ,  Yy  €Tt .

Indeed, each Ta is the set where the convex function maxueofr(r)uTy and
the concave function minue6fu(z) are differentiable. Therefore, the set 4 is of

fu l l  measure .  We se t  ( l :0 f {7 ) ,V :  -7 f . t ( r )  and 7 :T t in (2 .4 ) .  l t  i s  easy
to see that

un(il +.0(y) e Af/n)+6h@).

Hence, one has that

f i @ ; i l : @ t ( i l + w { v ) ) r v
< so(a),  Ya eTr.  (3.14)

Since fr is of full measure, as well as f!(n;y) with y as variable and 9; are

continuous, it follows from (3.14) that

f i@;a) < si(a), Vs e JR'.

This implies that

Iimsup lUrO + til - fr(d - tgt(il1( 0, vv € IR'.
t + 0 +
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On the other hand, it is easy to see

i :0

Yan Gao

gt(ty) : tgi(y), V, > 0, g € IR'.

By definition, each gi is a first order approximation for f, at z. The convexity and
continuity of gi contribute to the fact that gi is a support function. According to
Proposition 3.1 and the formulation (2.3), we conclude the result of the theorem.

I

Based on Theorem 3.2 and properties of the functions in the family M@),
we obtain the following theorem immediately.

Theorem 3.3. Suppose that r € IR' is a m,inim'izer to the problem (py) and,
h j  e  M ( i )  f o r  j : 1 , . . . , p .  T h e n ,  t h e r e  e r i s t  s c a l a r s  t r ,  )  0 , i : 0 ,  1 , . . . , m ,
p j ,  j  :  I , . . .  ,p ,  not  a l l  zero,  such that

o . i ^t@fc(i)+6 ft(,)) + i ^, run, rdian, gS7,
j :o

\ f t ( r )  : 0 ,  i . : 1 , . . .  , ' r n . .

(3 .15)

(3 .16)

we have obtained three necessary optimality conditions with Lagrange mul-

elements of superdifferentials. In the optimality condition (3.15), the Lagrange
multipliers are independent of the set of elements of superdifferentials, and only
the quasidifferential is utilized. In [15] and [18], necessary optimality conditions
were presented in a different form where Lagrange multipliers are not used.

4. Sufficient Optimality Conditions

This section is devoted to several sufficient optimality conditions for the problem
(P1) under the assumption of the so-called Fr-quasiconvexity and r|-pseudocon-
vexity, which were used by Yin and zhang 119] to establish sufficient optimality
conditions corresponding to Proposition 2.4.

Definition 4.1. f' : lR" x IR' ---+ R ts called ,ight subl'inear, if for anE fired
r € IR" , F(r,.) is sublinear.

Definition 4.2. f : IR' ---+ R is called Fr-quas,iconuer with respect to the conuer
compact set S cRn ati, i.f there erist a right subli,near function F and a uector
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mapp'ing ?: IR'x lRz ---+ IR' szch that for any r e IR.', fhe relat'ion f (") < f (a)

i,mpl'ies
F(r t@,*) , r )  < 0,  Vtr ,  €  S.

Definition 4.3. f : lR' -- R i,s called Fr-pseud'oconuex with respect to the conuer
compact set S CRn ati, if there erist a right sublinear function F and' a uector
mapp'ing T:lR'x IR.'---+ IR' such that for any r €Rn, the relat' ion f (") < f (")

impltes

F(r7@,i),?r) < 0, Vr.u e ,9.

Theorem 4.1. Leti be a feasi,ble solution of the proble^ (Pr) and let r satisfy
the Kuhn-TItcker optimality condition corresponding to Theorem3.2, i.e.,

0 € (o/0(r)+ afo@)) +ix,{ar,,-gj)+6fo@D +f,uiacrhl@) (4.1)
; - 1

and (3.12) hold,. Denote

J *  :  { j  I  t t i  >  0 ,  j  :  1 , . . . , p } ,

l -  :  { j  I  t t i  < 0 ,  j  :  1 , . . . , p } .

Suppose that there erist a ri.ght sublinear funct'ion F and a uector mapping r7 :
IR' x IR'-- IR', such that fs is Fr-pseudoconuer with respect to Qfs(n)l6fs(a)
at r, fi ' is Fr-quasiconuer w'ith respect to Qfi@)+6f{n) ati,hiU e J+) is
Fr-quas'iconuex with respect to 0ah1(i) at r and hi U e J-) is Fr-quasiconuet
uith respect to -0g1h1@) at r. Then, i 'is a minimizer of the problem (P1)'

Proof. By virtue of (4.1) and (3.12), there exist u e Qfln)+Af{E) and o7 €
0ah1(n) such that

o € u o +  D  \ r w r * \ u t r t
i'el(i) i--r

: t u o *  D  ^ o - o +  t  p j u j + D ? p i ) r i -
i e l ( r )  ie t+  i€J -

(4.2)

Suppose that r  is afeasible point of  (P1),  then f /")  3O: f i ( r) , i  e I(e),
hi@) : o: hi(n).Since /s is Fr-pseudoconvex with respect to Afo@)+6fo(n)
ain, h is Fr-quasiconvex with respect to Qfi(n)+6fi(a) atE,hiU e J+) is
Fr-quasiconvex with respect to )ahi(i) at 7 and hi (i e J-) is Fn-quasiconvex
with respect to -\ahi(d) atE, it follows that

F( r1@,2) ,wr )  1  0 ,  i  €  I ( r ) ,

F ( q ( * , z ) , r i ) < 0 ,  j e J + ,
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F ( r l @ , r ) , u i ) < 0 ,  j e  J - .

Because F is right sublinear, the relation (4.2) implies that
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(4.3)

p

0 < F(r1@,r), tro * D ^o.o +l uiui)
i € I  ( r )  i : r

< F(r7@,n) , .0)+ D ) , iF(q(r , r ) ,w)
i e I@)

+ t  p iF(n@,i) ,ao)+ I  ?p)F(q(*,r) ,u) .
j e J +  j € J -

This yields

0 < F(r1@,2) ,wo).

Noting that /s is Fn-pseudoconvex, we obtain /o(r) S /s(z). That is to say -
is a minimizer to the problem (P1). I

similarly to Theorem 4.1, we obtain a Kuhn-Tucker sufficient optimalitv
condition which corresponds to Theorem 3.1 as follows.

Theorem 4.2. LetE be a feasible solution of the problem (Pr) and there be a set
of wi €6ft(n) for i,:0, 1,... ,m such that the related, Kuhn-Tucker opt,imality
cond'it ion in the form of Theorem 3.L,' i .e.,

0 € Afo(E)+ ?, ,0 + i^o(.)@ro(z) + w) +f  u i@)(Ahi@)+6hi( i ) )
\

and (3.2) hold. Suppose that there etist a rtght sublinear funct'ion F and a uector
mapp'ing T : lR' x lR' ---+ Rn, such that fs is Fr-pseudoconuer w,ith respect to
8fo(z)+wo at r, fi is Fr-quas,iconuer, with respect to Qf6(n)+wi at r, hi U e l+)
' is Fr-quas'iconuen uith respeclto Qhi@)16h1@) at r and hi U e J-) is Fr-
quasiconuex with respect to -(6fu(r)+Af @)) at r, where J+ ind, J- are d,e.fined,
as in Theorem 4.I. Then, i ,is a minim'izer of the problem (P).

5. Concluding Remarks

In the Lagrange multipliers rules obtained in the above sections, the Demyanov
difference and the Rubinov defference for subdifferential and minus superdifffer-
ential of a quasidifferentiable function are utilized. As we know, the definitions
of .- and - do not give, in general, the formulae and calculating methods of
u -v and u -v . whereas, if both t/ and, v are convex hulls of a finite number
of points, the sets U-V and [/-V could be expressed and calculated.

Let

and

U : c o { u r l i e l } (5 .1 )
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(5 .2 )V : c o { o i l j e J } ,

where z6,ui € lR', I,J are finite index sets. Without loss of generality, we can
s u p p o s e  t h a t u a f  u i , V i , j  e  I , i l  j  a n d u i f  u i , V i , , i  € J , i +  j  G i v e n a p a i r
of indices i € I, j € ,/, construct two systems of linear inequalities, denoted by
(L6r) and (Lir), as follows:

(L,.i) (u" -  u1)Tr < 0, Vs € I \  {r} ,
( q - u ) r r < 0 ,  V t € J \ U ) ,

(u" -  u1)T r (  0,  Vs € 1\ { i } ,
(u1  -  u i ) r r<  0 ,  V t  €  J \  { j } ,

where r € IR'.

Obviously, each (Lir) is a system with n variables and card(I) * card(J) -

2 strictly linear inequalities, and each (L4i) is a system with n variables and
card(I) * card(J) - 2 linear inequalities, where "card" denotes cardinality, as
well as the coefficient matrices of (Li1) and of (Lir) coincide with each other.

Let [/ and V be defined as in (5.1) and (5.2). According to [9] and [10], the
sets [/-V and U)V have the following forms

and

and

(Lr.i)

U -V : co{ui - ui | (Loi) is consistent}

U -V : co{ui' ui | (Lti) has non-zero solutions}.

(5 3)

(5 .4 )

Based on formulations (5.3) and (5.4), we can calculate the sets U-V and
U-y. Thus, the optimality conditions obtained in above sections can be verified
for some cases. Indeed, the quasidifferentials of the functions, which are gener-
ated from smooth functions by finitely many maximum, minimum and smooth
composition operations, are pairs of polyhedron. In what follows, we take a class
of quasidifferentiable functions as an example.

Consider a smooth composition of max-type functions of the form:

h(") : e(+-1x fy (r), . . ., fr1: f  ̂ i @)), (5 .5 )

where g : lR- - IR and each fi1 : lR' * IR are continuously differentiable,
Ji for i - 1, . . ,rn are finite index sets. This class of functions is interesting
and important, in some sense. Many publications dealt with the problem of
minimizing it, see for instance 14, 6]. Given a point r € IR.', denote

f i(r) : yyy f ,t@), ' i  : 7,. . . ,m,

J 6 ( n )  :  { j  e  l o  I  f r 1 @ )  :  f o ( " ) } ,  i :  r , . . .  , m ,
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( t [ -

o n \ r ) : c o l u l u :  )
L-t

i € 1 1 @ )
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l<n, . . . , r ; :<r r ( r ) ,  . , r - ( r ) ;>  o) ,

h e  J t (n ) j ,

l u , , . . , t a : u , @ ) , , 1 ^ 1 , 1 1 Y  f 4 n @ ) ,

I 1 @ ) : { z e { 1 , . . . , m } losj t , .  .  ,  f * )
ofo

I - ( r )  : { z  e  { r ,  . . . , m }  1 o g ( f ' ' . . 'ofo
t l

1 J m . l  I:10 , ,  , f ^ ) :Ur (x ) , .  , / - ( " ) )<  o ) .

According to [5], h is quasidifferentiable on lR' and its quasidifferential can be
expressed as follows:

osur,. .  .  , l*)
0fo lu, ,  .  ,H:6@), . . . , r^ ( r ) )V fq , (* ) ,

n '  z  r  (  |  \ -
O n l r ' l  : c o l u l u :  )( r L t

i e l  -  ( r )

h  e  f i r ) \ .
In the l ight of (5.3) and (5.4), we can calculate the sets eh(n)-(-dh(r)) and
Qh(r):(-6h(z)). Besides, it is easy to see that n eM@1.

The above discussion is applicable to any function, which is generated from
smooth functions by finitely many maximum, minimum and smooth operations,
since its quasidifferential is a pair of polyhedra and can be calculated according
to quasidifferential calculus. For instance, let

H(r)  :  p, is,"(py" hin(r) , . . .  ,  E?:r f^ in(r)) , (5.6)

where 97, : IR- lR,fi j  : lR'---+ IR are corrtinuously differentiable, Jik,K are
finite index sets nlike h, fr is generated by twice maximum operations.

By the definition in [14], ,f , IR' -- lR- is said to be piecewise Cfr on an
open set ,9 c IR", where k is a positive integer, if there exists a finite family of
Ce functions f6 : S --+ lR- foyi :1,...,1, called the Ck pieces of /, such ihat
/ is continuous on ^9 and for every r € s,f(r): fi(r) for at least one index
i  e  { 1 ,  . . .  , I } .

According to [2], any piecewise cl function / can be formulated as a minimax
of finitely many smooth functions, i.e.,

f (") : y;trygy f"i@),

where fi7 : lR' - lR. is continuously differentiable, I and J are finite index sets.
This shows that any piecewise c1 function is contained in M(n) andfr@), and
its quasidifferential is a pair of polyhedra.
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