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Abstract. New first-order necessary optimality conditions with Lagrange multipliers
for quasidifferentiable optimization with equality and inequality constraints are pro-
posed. Kuhn-Tucker sufficient optimality conditions are also developed. Two kinds of
differences for two convex compact sets, proposed by Demyanov and by Rubinov and
Akhundov, respectively, are used.

1. Introduction

Quasidifferential calculus, developed by Demyanov and Rubinov, plays an im-
portant role in nonsmooth analysis and optimization. Since it is closely related to
the classical directional derivative, quasidifferential could be used to describe the
behavior of extreme point more strongly, and could be easily calculated in some
cases. As we know, the early necessary optimality conditions in geometric form
for quasidifferentiable optimization were proposed by Polyakova [15] and Shapiro
[18]. The versions with Lagrange multipliers for the inequality constrained prob-
lem were initially developed by Eppler and Luderer [7] and further investigated
by Gao [8] and Luderer [13]. For the equality and inequality constrained case,
optimality conditions with Lagrange multipliers were studied by Gao [9] and Yin
and Zhang [19]. The optimality conditions in [9] are presented by means of the
Demyanov difference of subdifferential and minus superdifferential, where the
subdifferential and the superdifferential is in the sense of quasidifferential calcu-
lus. It is well known that the optimality conditions with Lagrange multipliers
have many advantages over those of geometric form.

The aim of this paper is to explore optimality conditions with Lagrange
multipliers for quasidifferentiable optimization with equality and inequality con-
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straints. Three necessary optimality conditions, which improve, in some sense,
those given in [9], and corresponding sufficient optimality conditions are pro-
posed. Two kinds of differences of two convex compact sets, proposed by De-
myanov [3] and by Rubinov and Akbundov [17], respectively, are used. The
remainder of this paper is organized as follows: In Sec. 2, preliminaries on qua-
sidifferential calculus are recalled. In Sec. 3, three necessary optimality condi-
tions are proposed. In Sec. 4, Kuhn-Tucker sufficient optimality conditions are
developed. ’

2. Preliminaries

According to the definition in [5], f : R®™ — R is called quasidifferentiable at
a point x € R™ (in the sense of Demyanov and Rubinov), if it is directionally
differentiable at x, i.e., the directional derivative
7'(@;d) = lim %[f(a: +td) - f(z)], deR" 2.1)
is well-defined; moreover, the function f’(z;-) is representable as the difference
of two sublinear functions. In other words, there exists a pair of convex compact
sets 0f(z),0f (z) C R” such that
f'(z;d) = max vI'd+ min wTd, deR" (2.2)
vedf(x) weBf ()

The pair of sets Df(z) = [8f(z),0f(z)] is called a quasidifferential of f at ,
Of(z) and 8 f(x) are called a subdifferential and a superdifferential, respectively.

f is said to be uniformly directionally differentiable at z, if the convergence
in (2.1) holds uniformly with respect to an7 unit vector d. It was shown that
the directional differentiability is equivalent to the uniformly directional differ-
entiability for a locally Lipschitzian function [5]. Obviously, the quasidifferential
is not uniquely defined. Actually, suppose that [U, V] is a quasidifferential of f
at z, then for any convex compact set S C R", the pair of sets [U + S,V — ]
is also a quasidifferential of f at . The class of quasidifferentiable functions
contains convex, concave and differentiable functions, but also convex-concave,
maximum and other functions. It even contains some functions, which are not
locally Lipschitzian.

Let f : R®™ — R be locally Lipschitzian in a neighborhood of z. By the
definition in [1], the (Clarke) generalized gradient of f at z, denoted by dc; f(z),
is of the form:

Oarf(z) = co{fu € R" |u= lim Vf(z,),Vf(z,) exists, T, — z},

where “co” denotes convex hull.
In what follows, we review some of related concepts from [5, 11, 16, 17].
Let S € R™ be a convex compact set.

Pg(z) =maxulz, zeR"
ueS
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is called the support function of the set S. It is true that Pg is a convex function
on R™ with

APs(z) = {u € S |uTz = Ps(z)}, (2.3)

particularly Ps(0) = S, where “0” denotes subdifferential in the sense of convex
analysis. From (2.3), it follows that Pg is differentiable at z if and only if
the right hand side of (2.3) is a singleton. Given a point € R"”, if the set
{u € S| uPz = Ps(x)} is a singleton, denoted by {uo}, where ug € S, then
VPs(z) = ug.

A set T C R™ is called of full measure (with respect to R™), if R™\ T is a set
of measure zero. Let U,V C R™ be two convex compact sets and T' C R™ be a
full measure set such that their support functions Py and Py are differentiable
at every point £ € T. The set U—V, called the Demyanov difference of U and
V, is defined as the following:

U~V = cleo{VPy(z) - VPy(z) | z € T}, (2.4)

where “cl” and “co” denote closure and convex hull, respectively. It has been
shown that U~V does not depend on the specific choice of the set T, so it is
well-defined.

The Demyanov difference was i plicitly introduced by Demyanov [3] in order
to establish a relation between quasidifferential and the generalized gradient.
According to [5,17], the following relation holds:

darf (z;y)|y=0 = 8f(x) (-8 f(z)). (2.5)

Therefore, if both [Uy, V1] and [Uz, V2] are quasidifferentials of f at z, then
Ui—(=V1) = Us=(=V3). That is to say the set df(z)—(—0f(z)) is independent
from the specific choice of the quasidifferential.

Let S be a set in R™. Given a point z € R™, put

G.(8) ={ue S| uTz= Ps(z)},
Go(8)={ues|ufz= rneiguT:c}.

The set G,(S) and G,(S) are called the max-face and min-face of the set S
generated by z, respectively.

Let U and V be convex compact sets, the operation — of U and V, proposed
by Rubinov and Akhundov [17], is defined by

U~V =cleo | J[G=(U) — G=(V)]. (2.6)
z7#£0

We call U~V the Rubinov difference of U and V.
Let T C R™ , we say the set T has the property (£) with respect to the
pair of sets [U, V], if the measure of the set R™ \ T' is zero, and both G, (U) and

Go(V) for any z € T are singletons.



58 Yan Gao

Let M (z) denote a family of functions f defined on an open set X C R"
with z € X satisfying:

(a) f is locally Lipschitzian in a neighborhood of x, denoted by N(z, d).

(b) f is quasidifferentiable at z.

(c) There exist a subset @ C Vy of full measure (with respect to N(z,d)),
where V; is the set of the point y € N(x,d) where the gradient of f exists
at y, and a set T' possessing the property (£) with respect to the pair of sets
[0f(z),0f(x)] such that the relation

gk — g, th =01, 2z =z +trgr €Q, geT,

implies
Vf(zz) — Arg max u’ g+ Arg min w'g.
u€df(x) wegf(z)

The following relation between quasidifferential and the generalized gradient
was obtained by Rubinov and Akhundov [17], see also [5]:

3f(x)~(-0f(z)) C darf(z), Vf € M(x). (2.7)

Along with M(z), let us consider the function family M (x) consisting of
functions having the properties (a), (b) and the following property (d):

(d) One can find: (1) a subset @ C N(x,d) of full measure (with respect to
N(z,6)) at every point y of which the gradient V f(y) exists; (2) a quasidiffer-
ential [0f(z), f(x)] of the function f at the point x such that the relations

g — 0 th = 0%, e =z +tegk €Q, Vf(z) - v

imply v € G,(U) + G4(V).

It is true that M(z) C M(x). Any one of families M (x) and M (z) contains
convex, concave functions and maximum of smooth functions. If fi,..., fm
belong to M (z)(or M(z)), then maxi<i<m fi and g(f1(:),. .., fm(*)) still belong

to M(z) (or M(z)), where g is continuously differentiable on R™. The relation
below holds: U u
o1 f(x) C 8f (x)—(-0f(x)), Vf e M(z); (2.8)

HlOI'eOVBI',
3f(z)=(~8f(z)) C darf(x) C Bf (x)~(~Df(x)), Vf-€ M(x).

Now, let us consider the following problem:

(Py) minimize fo(z),
subject to fi(z) <0,i=1,...,m,
hJ(CC) ZO, j= 1,... wi,

where f;, hj :R* - Rfori=0,1,... ,m, j =1,...,p are quasidifferentiable.
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Given a point z € R™, denote

I‘(z)z{yER"|EI/\ZO,wk—>z,xk7éx,

T — X

) =0,1 < <p, oo

” — Y0, Y= )‘yO}y

¥(x)={y €R™ | hi(z;9) =0,5=1,...,p}.

The following two hypotheses for h; (j =1,...,p) at a point will be used to
establish necessary optimality conditions for the problem (P;).
Hypothesis 1. I'(z) = v(z).
Hypothesis 2. For every y € ~v(z), both Gy(dh;(z)) and éy(ghj(x)) are
singletons, denoted by G, (dh;(z)) = {a;(z,y)} and éy(ghj(z)) = {b;{z,y}},
respectively. Moreover, vectors ai(z,y) + b1(2,9), ..., ap(z,y) + bp(z,y) are
linearly independent.

It is easy to see that both Gy(0h;(z)) = {a;(z,y)} and éy(é_ihj(x)) =
{bj(z,y)} imply that functions max,egp,(z) vTy and minweghj @) wTly are dif-
ferentiable at y with

v ax vl =Tyl 7= 1. A
v, JBm Sy iz y), J P
and
V, min w'y=b;(z,y), j=1,...,p.
weESh;(z)

Thus, the function h}(z;) is differentiable at y with
Vst =ia(my)# bilo.g)s gy . Nip:

On the other hand, the fact that ai(x,y) + bi(z, ), ... ,ap(z, y) + by(z,y) are
linearly independent implies that p < n and Jacobian of (b} (z;y),... , hp(z;y))T
with y as variable is of full rank. Hypotheses 1 and 2 were initially proposed
to derive the optimality conditions of geometric form for the problem (P;) by
Polyakova [15] and Shapiro [18], respectively.

We now give some notations, which will be often used later on. Denote
d(z) =wefia| fibxy==i0fs =1 Julim} (2.9)
denote U+V for U—(—V) and denote U+V for U=(—V).
Proposition 2.1 [9]. Suppose that T is a minimizer to the problem (Py), f; for

t=1,...,m are uniformly directionally differentiable at T and at least one of
Hypothesis 1 and Hypothesis 2 holds. Denote

f(z) = max{fo(z) — fo(2), fu(x) | i € I(z)}.
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Then y = 0 is a minimizer to the following problem:

(P2)  minimize f'(%;y),
subject to hl(T;y) =0, j=1,...,p

Proposition 2.2 [9]. Suppose that T € R™ is a minimizer to the problem (P1),
fi fori=0,1,...,m and h; for j = 1,...,p are uniformly directionally dif-
ferentiable at T and at least one of Hypothesis 1 and Hypothesis 2 holds at T.

Then, there exist scalars Ay > 0, ¢ =0,1,... ,m, u;, j=1,...,p, not all zero,
such that
0€ > N(@fi(@)+ofi(x) ;+Zm(dh )+8h;(T)), (2.10)
i=0
/\if,-(f)—O, Z—l,... , m. (2.11)

Proposition 2.3 [9]. Suppose that T € R™ is a minimizer to the problem (P1),
and h; for j =1,...,p are locally Lipschitzian in a neighborhood of T. Then,
for any set of w; € Ofi(T), i = 0,1,...,m, there exist scalars Ai(w) > 0,
i=0,1,...,m, p(w), s =1,...,p, not all zero, such that

m p
0€ ) Mw)@fi(@) + wi) + Z 1 (w)Beyh (%), (2.12)
i=0 j=1
( )f;(l‘) = 1a am7 (213)

where Mi(w), i =1,... ,m and p;{w), j =1,...,p depend on the specific choice
of w= (wo,W1,...,Wn)-

Proposition 2.4 [19]. Suppose that T € R™ is a minimizer to the problem (P;),
and f; fori = 0,1,...,m and h; for j = 1,...,p are uniformly directionally
differentiable at T and Hypothesis 1 holds at . Then, for any set of w; €
0fi(Z), i = 0,1,...,m, there ezist scalars A\j(w) > 0, i = 0,1,... ,m, p;(w),
ji=1,...,p, not all zero, such that

0€ ) N(w)@Fu(®) +ws) + Y 3 (w)(8h;(Z) + By (7)), (2.14)
=0 7=1
Xfi(@) =0, i=1,...,m, (2.15)

where Aj(w),i=1,... ,m and p;(w), j=1,...,p depend on the specific choice
of w= (wp,Ww,...,Wn).
3. Necessary Optimality Conditions

In this section, three necessary optimality conditions with Lagrange multipliers
for the problem (P;) are developed.
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Theorem 3.1. Suppose that T € R™ is a minimizer to the problem (P1), and
fi fori =0,1,...,m and h; for j = 1,...,p are uniformly directionally dif-
ferentiable at T and at least one of Hypotheses 1 and 2 holds at . Then,
for any set of w; € Ofi(x),i = 0,1,...,m, there exist scalars Ni(w) > 0,i =
0,1,...,m,p;{(w),j =1,...,p, not all zero, such that

Oe Z Xi(w)@fi(E) + wi) + ) py(w)(0h;(2)+0h; (), (3.1)

i=1
Azfz(f) =0,i=1,...,m, (32)

where \i(w), i =1,...,m and pj(w), j =1,...,p depend on the specific choice
of w = (wp,w1,... ,Wn)

Proof. Tt follows from Proposition 2.1 that y = 0 is a minimizer to the problem
(P3). Noting

f'(@y) = max{f{(@y) | i € {0} JI@)}
one has that (y,z) = 0 is a minimizer to the following problem:
(P3) minimize z,
subject to f!(T;y) — 2 <0,i € {0} UI(E),
hy(Z;y) =0, j=1,...,p,

wherey € R?, z € R, (y, 2z) € R™"!. By virtue of (2.2), for any set of w; € of:(x),
i=0,1,...,m, the following relation holds:

max uTy+wly < fl(Z;y).

u€df;(T)
Hence, for any set of w; € 0fi(%), i = 0,1,...,m, (y,2) is a minimizer of the
following problem:
(P4) minimize z,
subject to  max uf +w <0,i€{0 I(z
J u€Dfi () y 4 { }U

h‘,](a:;y):()) j=17"' ’p

Evidently, all corresponding functions in (P4) with (y, z) € R™*! as variable,
are locally Lipschitzian. Hence, from the Fritz John necessary optimality con-
dition in terms of the generalized gradient for (P4) (1, Th.6.1.1], it follows that
there exist scalars Mw) > 0, \;(w) > 0,7 € {0} UI(Z), uj(w),j = 1,...,p, not
all zero, such that

0e X(w)@clz ](y,z)zo + Z )\i(’w)am( max U y+ w; y) |(y 2)=0
ie{o}uz (%) 8£:(®)

+Zu1 w)dcrhy(Z; ) |(w,2)=0; (3:3)
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where 0 € R**1. By virtue of (2.3), (2.5) and (3.3), we have that

0€XW)(0, )T+ D M(w)(@fi(®@) +wi, 1)

iG{O}UI(E
+Zﬂj T)+0h,(T),0). (3.4)
This leads to
0e > Mw)(@fi(@) +w) +ZMJ T)+0h, (%)), (3.5)
ie{0}UI(z)
Aw) = Y Nw). (3.6)
i€{0}UI(z)

The relation (3.6) implies that A;(w) for i € {0} JI(Z) and p;(w) for j =
1,...,p are not all zero. (Otherwise, it follows from (3.6) that A(w) = 0, thus
Aw), \i(w), i € {0} UI(@), pj(w), j =1,...,p are all zero.) Taking \;(w) =0
fori e {1,...,m}\ I(Z), we obtain (3.1) and (3.2). This completes the proof of
the theorem. |

If hj € M(z) for j = 1,...,p, the relation (3.1) yields the relation (2.12) be-
cause of Oh;(z)+0h;(T) C Bcih; (). This shows us that the optimality condition
(3.1) is sharper than the one given in (2.12) in the case h; € M(Z).

In the light of the notion of the first order approximation and a related
optimality condition, introduced by Ioffe [12], we can develop another optimality
condition for the problem (Py).

Given f: R™ — R, we say g : R® — R to be a first order approximation for
f at x € R™, provided that

g(ty) =tg(y), Vt>0, y €eR" (3.7)

and
lim sup %[f(x +ty) — f(z) —tg(y)] <0, Yy eR". (3.8)

t—0t

Proposition 3.1. [12, Th. 3] Suppose that T is a minimizer to the problem (Py),
and hj for j =1, ,p are locally Lipschitzian in a neighborhood of T and each
g; is a convex and continuous first order approzimation for f; at T. Then there
exist scalars \; > 0,i=0,1,---,m, p;, j = 1,--- ,p, not all zero, such that

0e Z/\ dg:(0) + Zp]acm @), (3.9)

=

)\lfz(f) =10 mie— 1. reacemn. (310)
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We now present an optimality condition for the problem (P;) without as-
sumptions except for the Lipschitzian property of h;.

Theorem 3.2. Suppose that T € R™ is a minimizer to the problem (P1), h; for

j=1,...,m are locally Lipschitzian in a neighborhood of T . Then, there exist
scalars A; > 0,4 =0,1,...,m, p;, j =1,...,p, not all zero, such that
T L P
0 Y N(2f:(F)H:(@) + Y nibarh; (@), (3.11)
i=0 j=1
Afi@) =0, i=1,...,m. (3.12)

Proof. Let g; be the support function of the set 8f;(Z)+0f:(Z), ie.,

gi(y) = max_ vy, i=0,1,...,m.
ved fi(T)+01:(T)

We next proceed to show fi(z;y) < gi(y). Let
T, = {y € R" | G,(8f:(Z)), G,(8fi(T)) are singletons}, i =1,... ,m. (3.13)
Denote
Gy (8fi(@)) = {v(v)}, Yy €T
G,(0fi(@) = {wiv)}, Ve T.

Indeed, each T; is the set where the convex function max,ecsy,(z) uTy and
the concave function min 3 fi(z) Bre differentiable. Therefore, the set T; is of

full measure. We set U = 8f;(z), V = —0f:(Z) and T = T; in (2.4). It is easy
to see that i
v (y) + wily) € 0fi(T)+0fi(T).

Hence, one has that

A@y) = (i) + wi) Ty
<gi(y), VyeT. (3.14)

Since T, is of full measure, as well as f/(Z;y) with y as variable and g; are
continuous, it follows from (3.14) that

fl(@y) < giy), Yy eR™.

This implies that

timsup |z + ) — file) - te:(y)] <0, Vy €R™

t—0+



= Yan Gao
On the other hand, it is easy to see
9i(ty) = tgi(y), V¢ =0, y eR™

By definition, each g, is a first order approximation for f; at Z. The convexity and
continuity of g; contribute to the fact that g; is a support function. According to
Proposition 3.1 and the formulation (2.3), we conclude the result of the theorem.

Based on Theorem 3.2 and properties of the functions in the family M (z),
we obtain the following theorem immediately.

Theorem 3.3. Suppose that T € R™ is a minimizer to the problem (P1) and
h; € M(z) for j = 1,...,p. Then, there exist scalars \; > 0,1 = 0,1,... ,m,
ki, 3=1,...,p, not all zero, such that

0€ Y N(0f:@)FF£(@)) + Y A (@hy (®) 40k, (7)), (3.15)
1=0 =0
MNfi(@)=0,i=1,...,m. (3.16)

We have obtained three necessary optimality conditions with Lagrange mul-
tipliers. These results improve those given in [9] and [19] in some sense. If
hj € M(z) then (8h;(z)+8h;(T)) C dcih;(T), therefore the relation (3.1) im-
plies (2.12). That is to say (3.1) is sharper than (2.12) in the case h; € M(z) for
J = 1,...,m. Besides, the relation Qh._f{;ﬁ)—i—ﬁhj(;f‘) C Ohy(x) + Ohy(x) always
holds. Hence, (3.1) is always sharper than (2.14). Compared with (2.12), the
Lagrange multipliers in (3.11) are independent of the specific choice of the set of
elements of superdifferentials. In the optimality condition (3.15), the Lagrange
multipliers are independent of the set of elements of superdifferentials, and only
the quasidifferential is utilized. In [15] and [18], necessary optimality conditions
were presented in a different form where Lagrange multipliers are not used.

4. Sufficient Optimality Conditions

This section is devoted to several sufficient optimality conditions for the problem
(Py) under the assumption of the so-called F,-quasiconvexity and F,)-pseudocon-
vexity, which were used by Yin and Zhang [19] to establish sufficient optimality
conditions corresponding to Proposition 2.4.

Definition 4.1. F : R™ x R® — R is called right sublinear, if for any fized
z € R™, F(z,-) is sublinear.

Definition 4.2. f:R™ — R is called F,-quasiconvez with respect to the convex
compact set S C R™ at T, if there exist a right sublinear function F and a vector
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mapping 1 : R® x R® — R" such that for any x € R", the relation f(z) < f(T)
implies
F(n(z,T),w) <0, Ywe S.

Definition 4.3. f : R™ — R is called F,-pseudoconvexr with respect to the convex
compact set S C R™ at T, if there exist a right sublinear function F' and a vector
mapping 1 : R™ x R® — R™ such that for any x € R™, the relation f(z) < f(Z)
implies

F(n(z,7),w) <0, YweS.

Theorem 4.1. Let T be a feasible solution of the problem (P1) and let T satisfy
the Kuhn-Tucker optimality condition corresponding to Theorem 3.2, i.e.,

€ (0fo(®)+0fo(@)) + Y_ M(0f(2)+0f(® +ZuJ601h( ) 41

j=1

and (3.12) hold. Denote
Jt={ilp;>0,i=1,...,p},

J ={jlpi<0,j=1,...,p}.

Suppose that there exist a right sublinear function F' and a vector mapping 7 :
R™ x R® — R™, such that fo is Fy,-pseudoconvez with respect to 0 fo(Z )40 fo(T)
at T, fi is Fy-quasiconvexr with respect to 8f:(Z)+0fi(T) at T, h; (j € JT) is
F,-quasiconver with respect to dcih;(T) at T and hj (j € J7) is Fn-quasiconvez
with respect to —0c1h;(T) at T. Then, T is a minimizer of the problem (P1).

Proof. By virtue of (4.1) and (3.12), there exist w; € 0fi()+0f;(Z) and v; €
Ocih;(T) such that

0€wy+ Z /\wz—l-ZuJUJ

i€I(x)
—wo+ » Awi+ Z v+ > (—p)vj. (4.2)
i€l(z) jeJ+ jeJ=

Suppose that « is a feasible point of (P1), then fi(z) < 0 = fi(Z), ¢ (_)
hj(x) = 0 = h;(Z). Since fo is Fy-pseudoconvex with respect to 9 fo(Z ) fo(Z)
at @, f; is F,-quasiconvex with respect to 0fi(Z )+Ofi(T) at T, h; (j € JT) is
F,,-quasiconvex with respect to dcih;(Z) at T and h; (j € J7) is F,,-quasiconvex
with respect to —dc1h;(Z) at Z, it follows that

F(y(z,z),w;) <0, i € I(T),

F(U(%T)avj) <0, j€ J+a
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F(n(maj)avj) <0, e J.

Because F' is right sublinear, the relation (4.2) implies that

D
0< F(n(, @), wo+ Y, wi+ ¥ pv;)

i€I(Z) J=1
< F(n(z Z AF(n(z,T), w;)
iel(x)
+ D wiF(n@®),v)+ ) (—uj)F(n(w,f),vi) (4.3)
jeJ+t jeJ-

This yields
0< F(n(xaf),wO)

Noting that fo is Fy-pseudoconvex, we obtain fo(Z) < fo(z). That is to say =
is a minimizer to the problem (Py). ™

Similarly to Theorem 4.1, we obtain a Kuhn-Tucker sufficient optimality
condition which corresponds to Theorem 3.1 as follows.

Theorem 4.2. Let T be a feasible solution of the problem (P1) and there be a set
of w; € 0f;(Z) fori=0,1,... ,m such that the related Kuhn-Tucker optimality
condition in the form of Theorem 3.1, i.e.,

0 € dfo(z +wo+z)\ )(8fi(z +wz+zpj )(8h,(Z)+Bh, (Z))

|
and (3.2) hold. Suppose that there exist a right sublinear function F and a vector
mapping n : R™ x R® — R"®, such that fo is F}-pseudoconvez with respect to
0fo(T)+wo at Z, f; is Fy)-quasiconvez with respect to 3f;(Z)+w; at T, hi(j€J)
is Fy-quasiconvex with respect to Oh;(T)+0h;(Z) at T and h; (j € J™) is F,-
quasiconvez with respect to —(0h; (f)—i—g f(T)) at T, where J* and J~ are defined
as in Theorem 4.1. Then, T is a minimizer of the problem (P;).

5. Concluding Remarks

In the Lagrange multipliers rules obtained in the above sections, the Demyanov
difference and the Rubinov defference for subdifferential and minus superdifffer-
ential of a quasidlfferentlable function are utilized. As we know, the definitions
of — and — do not give, in general, the formulae and calculating methods of
U-Vand UZV. Whereas if both U and V are convex hulls of a finite number
of points, the sets U~V and U~V could be expressed and calculated.
Let
U=co{u; |i eI} (5.1)

and
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V =col{v; |j€J}, (5.2)

where u;,v; € R, I, J are finite index sets. Without loss of generality, we can
suppose that u; # u;, Vi,j € I, i # j and v; # v;, Vi,j € J, i # j. Given a pair
of indices ¢ € I, j € J, construct two systems of linear inequalities, denoted by
(Li;) and (L;j), as follows:

(Lij) (us —us)Tx <0, Vs eTI\{i},
(ve — vj)Tz <0, Yte J\{j},

and
(Lis) (us — ;)T <0, VseI\{i},
(v —v;)Te <0, Vte J\ {5},

where z € R™.

Obviously, each (L;;) is a system with n variables and card(I) + card(J) —
2 strictly linear inequalities, and each (Eij) is a system with n variables and
card(I) + card(J) — 2 linear inequalities, where “card” denotes cardinality, as

well as the coefficient matrices of (L;;) and of (L;;) coincide with each other.

Let U and V be defined as in (5.1) and (5.2). According to [9] and [10], the
sets U—V and U=V have the following forms

U~V = co{u; — v; | (Li;) is consistent} (5.3)

and
U~V = co{u; — v; | (Li;) has non-zero solutions}. (5.4)

Based on formulations (5.3) and (5.4), we can calculate the sets U~V and
U-V. Thus, the optimality conditions obtained in above sections can be verified
for some cases. Indeed, the quasidifferentials of the functions, which are gener-
ated from smooth functions by finitely many maximum, minimum and smooth
composition operations, are pairs of polyhedron. In what follows, we take a class
of quasidifferentiable functions as an example.

Consider a smooth composition of max-type functions of the form:

h(z) = g(gyf fii(@), .- , max Tmg &), (5.5)

where g : R™ — R and each f;; : R® — R are continuously differentiable,
J; for i = 1,... ,m are finite index sets. This class of functions is interesting
and important, in some sense. Many publications dealt with the problem of
minimizing it, see for instance [4,6]. Given a point z € R™, denote

fi(z) = Ijgéjffij(w)» i=1,...,m,

Ji(x) ={j € Ji | fij(z) = fi(@)}, i=1,...,m,
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. 6g(f1aafm)
Li(z)={ie{l,...,m}| —ah 1y )= @), i (2)) > OF,

) 0T )
I(z)={ie{l,...,m}| —la—ﬁ- " (h1 o fm) =1 (@) fm (2)) < O}

According to [5], h is quasidifferentiable on R™ and its quasidifferential can be
expressed as follows:

0g9(f1,--- s fm)
Oh(z) = cofulu= Y (la—f, (1 ) =(f1 @)y fom () V fii (2),
i€l (z) ’
ji € Jz(m)}a
a 8g(f7aan)
Oh(z) = co{v|v= > laf (1 b )= (2 @) fon (2)) V figi (),
i€l_(x) ¢
i € Jl(l')}

In the light of (5.3) and (5.4), we can calculate the sets 9h(z)—(—dh(z)) and
Oh(z)=(—8h(z)). Besides, it is easy to see that h € M(z).

The above discussion is applicable to any function, which is generated from
smooth functions by finitely many maximum, minimum and smooth operations,
since its quasidifferential is a pair of polyhedra and can be calculated according
to quasidifferential calculus. For instance, let

H(z) = I,gle%gk(jrg% Wik , Jax Jmik(z)), (5.6)
where g : R™ — R, f;; : R® — R are continuously differentiable, J;i, K are
finite index sets. Unlike h, H is generated by twice maximum operations.

By the definition in [14], f : R®™ — R™ is said to be piecewise C* on an
open set S C R", where k is a positive integer, if there exists a finite family of
C* functions f; : § — R™ for i = 1,... 1, called the C* pieces of f, such that
[ is continuous on S and for every z € S, f(z) = f;(z) for at least one index
ie{l,...,1}. :

According to [2], any piecewise C! function f can be formulated as a minimax
of finitely many smooth functions, i.e.,

= min max f;;(x),
f(z) = min ma fiz(z)
where f;; : R® — R is continuously differentiable, I and J are finite index sets.

This shows that any piecewise C' function is contained in M (z) and M(z), and
its quasidifferential is a pair of polyhedra.
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