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Abstract. In this paper we prove some stability estimates of Holder type for the solu-
tion (and all of its derivatives) of an ill-posed Cauchy problem for the three-dimensional
Laplace equation and propose a marching difference scheme for solving the problem in
a stable way.

1. Introduction

The Cauchy problems for the Laplace equation is well-known to be ill-posed: not
for every Cauchy data there is a solution and if there is a solution, it may not
depend continuously on the data (see, e.g. [3] and the references therein). The
instability of the solution makes numerical methods for it difficult, since a small
perturbation in the data may cause a very large error in the solution. There have
been several methods for solving the Cauchy problem for the Laplace equation
in a stable way (see, e.g. [3] and the references therein) and the most popular
method is Tikhonov regularization. However, in order to solve the problem
numerically one has to discretize the regularized problem somehow. It led to
the idea that to discretize the problem directly and it was Chudov ([4]) who is
the first to use the finite difference method for the Cauchy problem for the two-
dimensional Laplace equation. The idea of Chudov has been developed further
by himself and his collaborators (see, e.g. [5,10] and the references therein).
Bakushinkii in [1,2] has used also the finite difference method for solving ill-posed
abstract Cauchy problems, Bukhgeim ([3]) has used the Carleman estimates
technique to prove some stability estimates for finite difference schemes for ill-
posed problems as well as developed a convergence theory. Meanwhile, Samarskii
and Vabishschevich ([9]) considered the finite difference method for solving ill-
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posed problems with Tikhonov regularization from a quite different point of
view. However, no marching difference scheme has been considered in these
works. We note that marching difference schemes are very easy-to-implement
and cheap, especially in multi-dimensional problems.

In this paper we consider the following Cauchy problem for the three-dimensional
Laplace equation

Ut F Ugz + Uy =0, 0<E <], (z,9) € R?, (1.1)
u(z,y,0) = o(z,y), (z,y) €R?,
ui(z,9,0) =0, (z,y) € R?

and suggest a stable marching difference scheme for it. We note that the non-
homogeneous problem can be transformed to (1.1)-(1.3) via an appropriate well-
posed boundary value problem. In the next section we shall give stability esti-
mates for all derivatives of u in Ly-norm. We note that such a kind of stability
estimates for the solution of the Cauchy problem for elliptic equations has never
appeared in the literature. In section 3 we shall use the mollification method
of [6] for solving (1.1)-(1.3) in a stable way, we give also error estimates of
Holder type between the exact solution and its mollified solutions, as well as
those of all their derivatives. Finally, in the last section we shall describe our
easy-to-implement stable marching difference scheme for (1.1)—(1.3).

1. Stability Estimates

As we consider our problem in Lo-space, we assume
p € Ly(R%).
Furthermore, we suppose that the solution =xists up to ¢t =1 and
u(-,-, 1) € Ly(R?).
For simplicity, we denote || - || ®2) = || - il
Theorem 2.1. Suppose that ||| < ||u(:,,1)||. Then fort € (0,1), we have

; 3 _
@ -l < Sllel = lud, - DI (2.1)
(it) form=0,1,2,...,£=0,1,2,... such that2m + ¢ > 1,

|omar < 2%(1 (P )”>)WX

1 /2m+/¢ s
(+ 2 (D™ het=utempe. @)
Proof. For a function g € L2(R?) we denote its Fourier transform by

a2m+l ( 3 Ty t)
Bz oyt

2e

+00c 400

1
9(61,82) = o / / g(z,y)e —i Z&er&)dldy

— 00 00
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Taking the Fourier transform with respect to = and y in the both sides of (1.1)-
(1.3) we have

13’1575(51752715) T (5% + ég)ﬁ'(é‘lag%t) = 0, 0<t <4 ].,
ﬂ(§17£270) = ()5(51752)7
0(§1,82,0) =0

It follows that
a(fla 62) t) = cosh (t \/ 5% g é-% )@(517 52)

Thus, for m=0,1,2,...,£=0,1,2,..., formally we have
O iPu(z,y,t) _ 8° 9%u(z,y,t)
dzmaymott  ott  Jzmoy™

o* oy
= o7 ((—i€)™ (—ige)™ cosh(ty/€ + & )p(6s, &2) )

— (—i€0)™(~i&)™\ /€2 + € cosh(t\/€} + €2 )a(61, 62).

Pl &) = —enfnl)
DS osh VEELE

cosh(ty/&F +€3) < eVETE  and  cosh(y/€2 + +£2) > e\/§1+£2

we have, for some L > 0,

Noting that

02m+£ 32m+eu (z,y,t
” azmaymaﬂ H _” dzmymtt “

+oc +oc

/ /‘—"5 (—ig ”‘\/5‘!4-52 cosh(t \/f] §§)¢(§1,§2)‘2d51d€2

E+63<L g+l

=[] |ciemigam e @ commiey/& + et ) dards

&+e3<L

— > o cosh(t\/E2 +€3) . 2
':qllL‘( &)™ (—i&)™ \/51 + &5 cosh \/ET 187 u(§1,§2,1)| dérdés

[ 16PriaP + @)icosiey/8 + BP0 ) derde

£+€3<L

e |2m oleosh(t/E§ +63) 12 .
+ / €126 2™ (& + &3) ’m‘ |y, 2, 1) P dErdEs

Ef+e3>L
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5 // 22im (€2 +&3)" ™ eV p(ey, &) Pdtrde

Ei+E5<L
1 1 2m+€ 20+ 1)1/E2 462 ~

T3 // o (B +8) 7 STIVER R a(er, 6,1) Pd6rde
£3+€3>L

1
< 22—mL2m+£€2t\/z||90||2

1 1 2m4-€ o(s_ el
+7 5 oo ((E+&) e IVETE ) u(., 1))
£24e2>L1

To estimate the second term in the last expression we need the following result.

Lemma 2.2. Let¢ >0, p >0 andn > 1. We have
(i) ifp/c< 1, then

sup(e”YyP) < e” P
y=>n

(i) if p/c > 1, then

P
sup(e~VyP) < (E) eCP.
y>n @

The proof of this lemma, is trivial and we omit it.

Now, if m = £ = 0, then
sup e2(-DVEHE - 201V
E3+E3>L
Thus
e )l < VElgl + 3¢ VE fug., -, D).

Since [|¢|| < |Ju(-,,1)||, we can take

VT = 1o I DI

el

and with this L we arrive at (2.1).
If 2m + ¢ > 1, then for L > 1 we have

3 2m + £ 2(2m+£)
sup ((ff +£3)7m 2Dy 5?'*53) < (——;n_ ; ) L2+ 2(t-1)VE
&+e3>L

Thus, for any L > 1,

32m+€u(‘, "y 1)
AxmOy™ott

1 (\/z)2m+lx

= om

(il + 5 (D™ )t g, 1,

2\ 1-t¢
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Taking VL = In (e%%)”)(z 1) we arrive at (2.2).
11

3. Mollification Method

Suppose that instead of the exact o we have only its approximation ¢° € La(R?)
such that

lo—¢fll <e. (3.1)

It is desired to solve (1.1)—(1.3) with the approximate data ¢° in a stable way.
In doing so we mollify ¢ by the Dirichlet kernel

+o0 +00 3 ( I : ( )
1 sinv(r —T) sin(y—¥) ,_ .
o _1 c : dzd 3.2
™ (2, ) 27r/ /sO(:c,y) = y—g (3.2)
— 00 —00

for some positive v, and instead of considering (1.1)—(1.3) with ¢® we look for
its mollified version

ug” +uly +uly =0, (z,9) € R?, t e (0,1), (3.3)
us(x,y,0) = o (z,y), (z,y) € R?, :
uf¥(z,9,00 =0  (z,y) €R%. (3.5)

Theorem 3.1. For any v > 0, the problem (3.3)—(3.5) is solvable and its solution
is stable

am—l—n-{—é Ev(. . ¢
H megy"ét’f ’ ) H = (\/i)eym+n+éet\/§u”¢an vm,n,£=0,1,2,... (36)
Furthermore, suppose thal
Then for € small enough, with
1 E
V—_—V*—ﬁln; (38)
we have, for 0 <t <1,
. I A S P
luly 1) = u (o Dl| < 1B + e Vi BV (3.9)

and

82m+zu(‘,-,t) a2m+£u5,,,* (~,',t) - 1 BN 2me
ormoymott  dzmdymott ( )
1 2m + £ 2+t EN2m+l 1-¢ & 4 1
(F7) " () -
22m+€/2+1 1—+¢

+
g (3.10)
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Proof. As in the proof of Theorem 2.1 we have

oty y,t) o ot
W—(—’tﬁl) (—i&2)"4 /€1 + & x

cosh(t4/€2 + £2) - 057 (&1, &).

Since supp @*% C [—v,v] x [-1, V] (see, e.g. (8, p. 316-318]), we obtain (3.6).

) " . ()21u+-‘ u{ ) 52?:r.+)",“5.1r(_, = f,)
Now we estimate the error e

- F & P. —
Dzmdy™ 8t‘ ozmaymott G

0,1,2,... and 0 <t < 1. We have

a'?.'n'n—‘,-f”(_‘ - l') 5’2?u+f”£.u(_. = f) A dZ-HH—EHII(_! e !) ('.}?n'a.+f“|3,u(_1 . tJ
Spm é)y'“?- ot Apmé Jy™ att O (').yfz' ot dax™mayn ot
('}Qm-l—f_‘,ili.v(_! < ” dZm—f—P H

dzm t’?yT" atl Damayn Y df‘"

The second term in the right-hand side can be estimated as follows

82m+£u°*"(-,-,t) 32m+£ su H ’

62m+€u0 u S t) 62m+2u5 u t) ”

dzmaymatt azmaymaté axmaymatf ammaymate
+00 +oo
/ / l —i&)™ (=12 m\/ 51 Ez COSh( \/fz 4 &2)

T ' 2 1/2
X X[ (61)X (v} (€2) [B(é1, €2) — 995(51,52)]’ d€1d§2)

+v +v ,
= (//‘(—i&)M(—i@)m /€2 + €2 cosh (t\/gi? +§§)

—v—v N i -

X (Plen,&2) - (60, 2)) | dbrda)
+v +v
m T1E2 |~ —_ f

= (//%(5?‘*‘{%)2 (£%+£g)eet\/51+fz|(p(§1’62)_905(51,52)‘26151(152)1 2
< 2%(2V2)m+!3/26tu\/§” — |l < 2]1;1 (2V2)m+l/2et,,\/§ ..

To estimate the first term we note that
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62m+£u(., . t) 82m+l 0, u t)
Brm Ayttt axmaynaﬂ
+oo +oo

[ ] (i)™ (iga)™ [ + € cosh (1y/eF +3)

x@@@g—@mﬁﬂ4&WVﬁ+ﬁg
x cosh (t\/ff + §§)X[_V,V] (€)X v (fz)@(&,fz)‘zd&dfz)l/z
=(/ /|emW%@MM%ﬁé

€112V 1€2] 2w

!

ct).'sh{{\/ﬁf +£2) . 2 1/2
— €2, 1)| dérd
X —— \/m u(EI 62 )‘ gl 52)

m 2 ] /
<( [ (e Vi g, 6 0 ) g

£2+4€2>02

1 m U"
S 2m.+l gup ((El ) & s l]V/E1+£2)I| AN ‘I)H

E1HE3o0?

If m = £ = 0, then the last is bounded by

Setv,
Thus
a8 — us? (- )] < etV 4 %e(t“l)”E,
Taking v = v* = " In — (since ¢ is small enough, ]nE S bt
(3.9). 4 E e

If 2m 4 £ > 1, then applying Lemma 2.2 for v > 1 we get

7. 2 2 £ 2m+£
sup ((g% +§§)m+£/26(t_1)\35f+sf) < ( m+ ) p(t—Dv 2m+e.

202 T

Thus, in this case

i 82m+€u(_’ -,t) 82m+€ €, IJ ’. H

Az Oymott Axr™ Ay mott
1 N2t /2 L 2m 4 I\ 1y ama
< 2—m(21/ ) e €+ om+1 (T—T) 6( )VI/ mTE.
Again, with the assumption ¢ is small enough we can take v = v* = — ln —

J,

such that »* > 1 and arrive at (3.10).
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4. Stable Marching Difference Scheme

In order to solve our problem (1.1)-(1.3) numerically in an effective way we shall
use a stable marching difference scheme for it based on our mollification method.
In doing so we first mollify the Cauchy data ¢° with the mollification parameter
v according to Theorem 3.1, then we get a stable problem and we have error
estimates (3.9) and (3.10). For simplicity, set

U= u™, W=y U= o5, (4.1)

With the notation AU = ugg + uyy we have a Cauchy problem for a system’ of
first-order differential equations for U and W

Uy=W, te(0,1), (z,y) €R? (4.2)
W; = ~AU, te(0,1), (z,y) € R?, (4.3)
Uz,y,0) =¥(z,y), (z,9) €R? (4.4)
W(.’l), Y, O) =0, (IE, y) € R2 (45)
We introduce a uniform grid on R? x [0, 1] plane
{:vm = mh, yn, = nh, t =k7'|m,r‘z>=0,:|:1,:b2,..., k=0,1,...,N, 7= %}
For a function f(z,y,t) defined on R? x [0, 1] set
rlfz,n = f($m,yn,tk)-
We discretize (4.2)—(4.5) as follows
Uktt —yk
Ln$=wyﬁ+nl’ k=0,1,...,N—1, myn=0,=%1,... (4.6)
T )
Wk+l Wk
i -, =2 = _AhUT’:':l,n’ k= Oa]-v---)N_ ]-, m,n= 0,:|:1,
: 4.7
U =t Uninih i B =0p0 1 4 (4.8)
WY n=0, mn=0,4l,.... (4.9)
Here
A Uk o U#H—l,n - 2U7,;‘z,n iR Urlfl—l,n i U'rlft,n-i-l - 2U’!’:’:l,n sl Urljt,n—l
hYm.n = h2 h2 .
The system (4.6)—(4.9) is a marching difference scheme:
USL’" =¥nn mn=0=1,... (4.10)
W2 ,.=0 mn=0z=%1,... (4.11)
Wetl =Wy +78,UF ,, k=0,1,...,N -1, (4.12)

Uk =Uf  + Wk k=0,1,...,. N -1. (4.13)
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Theorem 4.1. The difference scheme (4.6)—(4.9) approxzimates the problem
(4.2)-(4.5) with a truncation error which behaves like O(h? + 72). Furthermore
if h < /v (v has been chosen in Theorem 3.1), then it is unconditionally stable.

Proof. The first assertion is clear. We prove only the stability of the scheme.
In doing so we need the notion of the discrete Fourier transform: for a function
f defined on the net {(mh, nh),m,n=0,£1,... } we define its discrete Fourier
transform by

A h2

00 0o
= = _.( Im+77yn) _E ZT
flw,n) = o Z Z fmne " ) h_<_‘-’-)7"7S

h ¥

m=—0o0 N=—0o0

and its £o-norm by

I£ll, =22 X5 D2 ol

m=—00 n=—00

It is well-known that

A
Hszz ix ”fHLz((_" Z)x(—Z,1))

i2b) PR

and if f € Ly(R?), suppf(w,n) C [-v,v] x [-v,v], v < w/h, then ?(w,n) =
f(w,n) (see, e.g. [7, Appendix A]).

Now taking the discrete Fourier transform in the both sides of (4.12) and (4.13)
we get for k=0,1,...,N -1

sin’ wh + sin
A A 5 i A
WAL — W g2 e LD

h#
A A A
Uk = UF + rWAHL

Since 7 = 1/N < 1, taking the inequality

2 Mh
2

h
4(sin2 %}f + sin? %)/hz < w? 4+ n?

into account, we get
A A A A
max{|Wk+1|,|Uk+1|} <(147+7W? +n2))max{|Wk|,|Uk|} <l
A A
< (1474 7(w? + )| < e ),

Mgy B
Since h < m/v, we have ¥ = W. It follows that

A A
max{HWk”éz, ||Uk||12} = ma‘x{“Wk”LZ((_%’%)Z)’ HUkHLg((—;L—',%V)}
< || 1w, ) |

< 20y,
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Thus, our scheme is stable.
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