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Abstract. We consider a model of a predator-prey population with the action of a

parasite in the almost periodic case. We establish a uniform persistence criterion for

the model.

1. Introduction

Consider the following system of nonautonomous ordinary differential equations:

i : ltr(t) + BLft)Yls -'2+L - IP tLx)Y 
, (1'1)

-  |  -  , , , 5 P 1 ( t , X ) + I P 2 ( t , X ) lY : Y  
l - t ( r , Y ) + c ( t ) - T ) ,

where X : ,S+ I ;  B,D,Pt ,Pz, f  :  R x [0,+m) - - -+ f t  are uni formly a lmost
periodic in the first variable; and 0o,At,c: R --+ (0'+oo) are almost periodic

bounded below by positive constants.
The system (1.1) was proposed by Fleedman 11] to model the interactions

between a prey population X and a predator population Y with ,t.t-re action of

a parasite. Due to the action of the parasite, the prey population X is divided

* This work was supported in part by the National Basic Program in Natural Sciences,

Vietnam.
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into two classes: the susceptible class "9 and the infective class 1. The predators
are assumed to be all infected.

The case of functions B, D, P1, Pz,l, 0r, p2, cnot depending on t-variable
was considered in l1]. The periodic case was studied in [b] . Our concern in this
paper is with the more general case in which the model is depending on time
f aimost periodically. Such a generalization seems to be a natural one consid-
ering the osciliations to which any ecological parameter might quite naturally
be exposed (for example, those due to seasonal effects of weather, food supply,
mating habits, hunting or harvesting seasons, etc.).

The further assumptions on the functions of the system (1.1) are given below,
which are based on those in [1].

The function B(t, x) is the birth rate of the prey population at time I and
is assumed to be independent of parasite infection. F\rrther, it is assumed that
the birth rate increases with increasing population. Hence,
(H1) B(r,0) : 0, B(t, .) is irrcreasing for each t e R, and there exists a ) 0

such that l iminf 
'ft:=') 

) a for all f e R.
X--0+ A

The function D(t, X) represents the "natural" death rate of the prey popu_
lation at time f, that is, death due to any occurrence other than predation. It is
also assumed that the death rate increases with increasing population. Hence,
(H2) D(t,0) : 0 and D(t, . ) is increasing for t e R.

In the system (1.1) all prey members are born into the susceptible class and
may be subjected to parasitism immediately after birth. The natural death
rates corresponding to each prey class are proportional to the relative densities

, s l
of  that  c lass,  i .e . ,  +D(t ,X)  and -n( t ,X)  are the natura l  death rates of  thex x
susceptible and infective prey populations, respectively.

If there are no predators and parasites, the prey population can be described
by the following equation, (see Eqs. (1.1)):

X  :  X g ( t , X ) , ( r .2 )
where g(1, X) : lB(t,X) - D(t,X)llX is the specific growth rate of the prey
population at time t. Due to limited resources at time f, the specific growth rate
is decreasing with increasing population; eventually, it becomes negative since
food supply can support only a finite population. Therefore,

1  r f
(Hs) g(t, X) is continuous on B x 10, *-) ' 

,IT; f . l  
s(t,0)dt > 0 and there

exists o ) 0 such that Dyg(t,X) < -ofor all (t,X) e ft x 10,+oo), where Dy
denotes any Dini partial derivative in X.

The function P,(t,X) (i, :1,2) is the predator functional response of the
susceptible and infective populations, respectively. It is assumed that owing to
the action ofthe parasites, the infected prey has an increasingly higher functional
response than the uninfected prey. Hence,
(H4) Pi ( t ,0)  :  o  ( i , :  I ,2)  and the funct ion Pz( t ,  . )  -  Pr( t , . )  is  increasing for

each I € R, and there exists 7 ) 0 such that ' '  Pzft 'X)t f f#o  
T  < l fo ra l l  te  R.
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The function f (t, y) is the density dependent death rate of the predator in

the absence of prey, which should be increasing with population. Hence,

(H5) infl6pf(t,0) ) 0 and f(r, .) > 0 is increasing for each t e R'

Let  us denote by f i l  the set  { (S, / ,Y)  e R3 :  S 2 0, /  > 0 'y  > 0} '

?1(t,S,I,Y) (11: ft x Rf - R3) the right hand side of (1'1)' The following

hypothesis is'needed for iechnical mathematical reason, in fact, this condition

".rr,rr". 
that the theory of skew-product semi-flows is applicable'

(Ho) The vector function ft is locally Lipschitz in (S,1, Y) uniformly in t'

The function c(t) represents the proportion of prey that is converted to preda-

tor biomass. The function Bs(f) represents the infection rate of susceptible prey

in the absence of predators, the function B1(t) is the rate per unit predator of

prey infection due to parasitic reproduction in the predator population' In the

system (1.1) we assume that all predators are infected. Hence, susceptible prey

infected by parasites are removed from the susceptible class at a specific rate

of f1oft) + P;Q)Y, and an equivalent number of prey are added to the infected

class.

For the ecological significance of the system (1.1), the reader is referred to

t1 l .
We say that  (1.1)  ' is  pers is tent  z / l iminf t -+-  d((S( ' ) ,1( ' ) ,y(4) 'ARi l i .  0

for any ,olutio, i, 1i.f ;-wi,th i 'ni ' tr 'al conditt 'ons (S(to),1(t0)'y(tg)) e int(ni).-
" t h ,e i , n i e r i o r  

o f  R t * : ' { (S , I ,Y ) :  S  2  0 t  I  >  0 ,Y  20 } ,  whe red ( (S ( t ) '  I ( t ) 'Y ( t ) ) '

0R1) zs the Eucl,idean d,istan'ce from (s(t),I(r),y(t)) to 0R\ - the boundary of

R i .

I f ,  zn addi t ion,  I iminf l - . . -d((S(r ) ,  I ( t ) ,Y( t ) ,441)  > 5.> 0.where 6 does not

i"p"nd, on pos,itiue initial cond,,it'ions, then (t.t) Zs said to be uniformly pers'istent'

The system ,is calle d,,iss,ipati,ue if there ertsts a pos'itiue constant M such that

t imsuir -* -  lS( t ) l  M,  I imsupi*+-  l1( r ) l  
(  M,  I imsuPr-+-  lY( t ) l  <  M '

If the sgstem is uniformly pers,istent and d,'issipat'i1)e, u)e say that'it is permanent'

Permanence theory has developed into a mathematically fascinating area for

its significance in the differential equation models in population dynamics' It

formalizes the concepts of nonextinction (uniform persistence) and nonexplosion

(dissipativity) for the considered species'

For a survey of permanence theory, the reader is referred to Hutson and

Schmitt [3]. Waltman [7].
Our purpose is to give a sufficient condition for permanence of the system

(1.1). Tlie app.oa"h in this paper is based on analyzing the skew-product semi-

flows associated with (1.1). The reader is referred to sell [4] for background on

skew-product flows. For the theory of almost periodic functions' see Yoshizawa

t8l
The paper is organized as follows: In Sec' 2 we study behavior of solutions

of the system (1.1) in the absence of preys and in the absence of predators

respectively. The skew product semi-flow is introduced here. we also recall a

well-known result on persistence in semi-flows. Sec. 3 contains our main result

on permanence of (1.1).



2 . 1 .
riq

Asymptotic Behavior of solutions of the system (1.1) on the Boundary of

Let us denote by int JRf , drRf the interior and the boundary of ,Rf , respectively;
.41 the set of all almost periodic functions from R into R whicii are bounded
below by a positive constant.

Denote by tr| the r-translation of tr'; that is, F,(t,r): F(t1-r,r), H(F)
the hull of F; that is, the closure (in the compact open topolosy) of the 

'sei

{F,: r e R}. We have H(f) is compact, and f'*(f,r) is uniiormly almost
periodic in t for all F* € H(F).

-  D e f i n e  Q :  ( B , D , P r , P 2 , l  , c , g o , 0 ) . F o r  e a c h  g *  :  ( B * , D * , p i , p [ , ] * , c *
P6, pi) € H(g), Iet us consider

2. Preliminaries

Lemma 2.L. For the system (2.I), there erists
the  se t  B  :  { (S , I ,Y )  e  R \  :  c1a (S  +  I )  +y

strongly attractiue w,ith respect to R\.
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( 2 . 1 )

a pos'itiue number L such that
1  L j ,  whe re  cM:  supc ( t ) ,  l s

t €R

s : B*(t,n - sD.(! 'x) - W6@; 1ji(t)vls - sef Ufx)v ,
I : [P6ft) + l3ift)Yls - ID.(!'x) - rei(*x)v 

,

t : Y 
f 
-t-,r, v1 1 ". 

p1s Pi Q' x) !14 Q' x)]

It is easy to see that the system (2.1) satisfies (Hr)-(Ho). By (Ho), the cauchy
problem for (2.1) _with the nonnegative initial values has a unique solution. It is
easy to see that Rf; is positively invarignt with respect to (2.1). The boundedness
of solutions of (2.1) is shown by the fij-llowine lemma.

Proof. By (H3) there exists K ) 0 such that g(t,K) < -1 for all I e R. put

L  :  cuK t  cu  sup ^  {a ( t ,  X)  -  D( t ,X) } /  in l f  ( r ,0 ) .
1t,X 1€R x R3* 

'  '  te R

It is easy to see that

cM : sup c*(t), g*(t,K) < 4 for all t e R,
t € R

L : cuK t cu sup - {9. (t ,  X) - D. (t,  X)l I  iryt^f*(r,0),( t , x ) € n x R l  ' '  t € R
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where  g * ( f ,  X ) : lB . ( t ,X )  -  D* ( t ,X ) ] lX .

Let (S(t), I(t),Y(t)) be any solution to (2.1) with (,S, I,Y)(to) e R| for
some f6 e fi. We have

l lcurx(t)+ v(r) ]  < cylB"( t ,X(r))  -  D.( t ,x( t ) ) ) -  f . ( t ,  Y(t))Y(t)
d t '  

' "

< clalB* 1t, X(t)) - D. (t,  X(t)) l  - r*(r,O)v(r).
(2  2 )

If cyX(t) +Y(t) ) L for some f ) ts then either X(f) ) K or X(t) < K and

Y(t) > L - cyK. Thus, (2.2) implies tnat 
ftlcxax(t) 

+Y(ql ( 0 whenever

cyX(t) +Y(t) > tr. This proves the lemma.

By Lemma 2.1, the solution (S(r),1(r),Y(t)) of (2.1) with initial values
S(to) : So ) 0, /(to) : -16 ) 0, Y(to) : Yo ) 0 can be continued for all
t ) t s .

It is easy to see that the Y-axis is invariant and solutions initiating on the
Y-axis approach the origin O(0,0,0) as I + *oo, representing starvation of
the predator in the absence of any prey. Also the ^9/-plane is invariant and
the subsystem in this plane represents the prey population in the absence of
predators:

.q D+ (t x\
S : B*(t ,X) - : ' - -) : : : : - !  -  Bd(t)S,' x

r rt+ t+ v)

i  :  n : t t l . c  -  
' u  \ 1 1 , L

. _ | ' ' 0 \ U I U X

Adding the two above equations we get the equation

X :  X g . ( t , X ) , (2.4)

where g*( f  ,  X)  :  lB.  ( t ,  X)  -  D.  ( t ,  X)) lX.
In order to analyze the asymptotic behavior of solutions of the equation (2.4)

we use the following lemma in [6].

Lemma 2.2. Let O : R x [0, +oo) --+ R be uniformly almost periodic in the first
uariable and sat'isfy:

l f T
( i )  _ l im ;  I  o ( t ,0 )d t  >0  and

I  + - i@ - r  J0
(11) there ex'ists a > 0 such that Dy6(t,X) < -o for all (t,X) e R x 10,+oo),

where.Dy denotes any D'in'i partial deriuat'iue in X.
Then the following problem

X : X O ( t , X ) ,  X ( . ) e A 1 , (2 .5 )

(Aa Ls the set of all almost period'ic functions from R into R which are bounded

below by a positiue constant) has a unique solution X.(.). Moreouer, ,f X(t)
'is any solution of the equat'ion 'in (2.5) with X(ro) > 0 for some ts € R then

l im lX( t )  -  X. ( t ) l  :0 .

(2 .3)
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^ By Lemma 2.2,lhe problem (2.4) with X(.) e ,4a has a unique solution, say
x.( . ) .

For the system (2.3), we have the following result.

Theorem 2.3. Systern (2.3) has a un'ique almost period,'ic solut'ion 13.1t;, F1t;;
whose components are bounded below by pos'it;iue constants.

Moreouer, S-(t)+ I.(t): X-(t), where X*(.) is the un'ique solut'ion i,n A1
of (2.4), and, .Iim lS(t) -,9.1t;1 : 0, .lim l/(t) - P(t)l : 0 for all solut'ions

"  t + m '  "  t . - * m

(S(t),/(t)) of (2.3) with the init'ial cond,itions sat'isfyi,ns (S(ts),1(ts)) e .rRf \
{ ( 0 , 0 ) } .

The following lemma is needed for proving Theorem 2.3.

Lemma 2.4. Let a(t) and b(t) be almost period'ic functions such that a(.) e Aa
t r T

and lim ) | b(t)dt> 0. Then the equation
t ' @ t  J o  

x : a ( t ) - b ( t ) x

has a unique solution Xo(.) e Aa. Moreouer, u)e haue 
,!5glxo(t) 

- X(t)l : 6

for any solution X(t) of Q.\ with the i,ni,tial ualue sat'isfyi,ng X(ts): X0 > 0.

Proof. It is easy to see that (0, *oo) is invariant. Let us consider (2.6) for
X e (0,+m). By the change of variable X :7lX in (2.6) we get an equation
which has the form of the equation in (2.5). The lemma follows by using Lemma
2 .2 .

Proof of Theorem 2.3.
(i) Eristence. Since -?-1i; ir a solution to the equation (2.3), we have

!1n r. 1r1 : B* (t,f.(r)) - D* (t,f-(r)).
d t '

Since -?-(.) is bounded above and below by positive constants, we get

, .  1  f T . - . , . .  : : . " . . .

,rr5 + J, fa. 1t, ft. 1ty - D. (t,f . (r))] d,t : o.

By (Hr), there exists e ) 0 such that B*(t,f.(t)) ) e for all t e R. Thus,

1 f T

"r'*; J" 
D"(t,X.(t))dt > 0.

By Lemma 2.4, the problem

i :  a.1t , f t .1t7.1-  f l .g '?.( t l l  +Blr t i l  s ,  s( . )  e A+, (2.7)\ " , t * t  
L  f - ( r )  

'  - * . " r1  v '  v \ ' , '  !  v

has a unique solution, ruy ^9-1.;, and the problem

(2.6)

i : p51t13.1t) -'-!#r, r(.) € A+, (2.8)
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has a unique solution, .uy F1;. We norv consider

-k  :  B*( t , f . ( r ) )  -  D. (*8.QD x,  x( . )  €  A+.  \2 .s)x . ( t )

It is not hard to see that -?. (.) ana 3. (.)_+ i.1.; :rr" two-solutions to (2.9). By

the uniqueness in Lemm a 2.4 \t implies X. (t) : S- (t) + 1- (r)'

(11) Attractiuity and un'iqueness. Suppose that (S(t),1(t)) is any solution to
(2.3) with init ial conditions satisfying ,9(ts) > 0, f(tg) ) 0 and .9(t0)+ 1(t0) > 0
for some fe € R. Since X(t) : ,9(t) + I(t) is a solution to (2.4), we have, by

Lemma 2.2, that 
r 
lim lx(t) - -t.(r)l : 0. From (2.3) we get

*lS. - sl(r) : -z(r)[-?.1r) - s(r)] -t u(t),
o , t '

where z(r) : 
D.(18:(t)) 

+06(r) and
x- ( t )

u( t ) :  B*( t , f " ( r ) )  -  B*( t ,X(r ) )+ lD. ( t 'X( t ) )  -  D. ( t rX: ( ' ) ) l t i r l
L x(r) f t . ( t)  l " ' " ' '

Clearly uz: inften{u(t)} > 0. By (Hs), there exists k > 0 such that
supte,R g.ft,k) < 0. It is not hard to see that ^9(i) < X(t) ( max{k,X(to)}

for all t ) ts. Thus, since l iml-a- lx(t) - f-(t)l : 0, we have t '(t) ---+ 0 as
f --+ *oo.

We c la im that  l iml-a-  lS. ( t )  -  S( t ;1 :6.

Indeed, there are two exhaustive possibilities: (a) there exists f1 ) ts such

n ---+ @.

If (a) holds, then limt*+-(,9. - S)(t) exists. If l iml*1-(3- - S;1t; ; o,
then since 

"(t) 
> u7 ) 0 and u(l) - 0 as I - +*, (2.10) implies the existence

of numbers o > 0 and tzt  hsuchthat l#t3. 
-S)(t) l  > o for al l  f  > fz.  This

contradicts the boundedness of (3- - S)(t) on [ts,too). Therefore, if (a) holds
then liml-a* 1,9.(t) - S(t)l : g.

If (b) holds, let rn € [s,, s,1r] be chosen for each n ) 1 such that

(2 .10)

( 2 . 1  1 )1,9.(r,) - S(r")l : r,nqx 1^9-it; - s1t;1
s "  S l S s " + r  

'

' l ^ d ^
Since 

f r (S . -S) (s " ) :0  
fo r  n )  7 ,  i t  fo l lows Lhat  

* (5 .  
-S) ( " , )  :0  fo r  n2 l .

Therefore, by (2.10), ,9-(",) - S(r-): u(r-)lu(r-). Since u(r.) > uz ) 0 and
u(t) -+ 0 as I -+ f oo, we have

I i+ (3.(",)- S(r,)) : s
n++rc

(2.r2)

Since r, + foo as r, -) oo, (2.11) and, (2.12) imply that ,9.(t) - S(l) --+ 0 as
f + *oo.

Since (a) and (b) are exhaustive, the claim is proved.
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Thus, since ft-$) - k1t1 - 0 as t -+ *oo and X(t) : '511; + I(t), we have

that F(f) - I(t) -) 0 as f - *oo. The attractivity is proved. The uniqueness is

a consequence of the attractivity.
The theorem is proved.

Let us denote UV -?(t) the unique positive almost periodic solution of (1.2),
, , a , . . 4 , _ , .

and (S(f),1(t)) the unique almost periodic solution of

Lemma 2.5. Let {r^} C R be a sequence such that B,n, D,*, gor^ contnrle to

B*, D*, B[, respect' iuely inthe compact opentopologA asn-- x' Then S,^, I,^

conuerge to S*, I*, respectiuelE, 'in the compact open topology as n ---+ @.

Proof. Since (^9(t),f(t)) is almost periodic, there exists a subsequence {r'o}
of {r,} such that (S".*(t), I"^^(t)) converges to some almost periodic function

(.90(r),10(t)) uniformly on R as k + *co. Consider

Since the right hand side of (2.14) converges to the right hand side of (2.3)

uniformly on any compact subset of R x ft: lr, (,S0(r),10(t)) is a solution of (2.3).

The uniqueness in Theorem2.S implies tht,t ^9-(t) :,SO(t) ana F1l) :10(t) for

all t e R. Since { (,9". , i" ll it relatively compact, the lemma is proved.

2.2. The Skew-Product Semi-Flow

Let (2 .15)i :  f  ( t , r ) ,

U, Ax rR| -- R3), be induced from (1.1) by making the change of variables

s: B(t , r )  -  tog**)  -  go(t)s,

r :  po(t)s ID(t 'X)

r1( t ) :  
#" , r , ,  

r2( t ) :  
htUr,  

4( t ) :Y(t ) ,

(2 .13)

(2.r4)

(2 .16)

where (,9'(t),1(t)) is the solution of (2.13) as in Theorem2.3. /

It is clear that (0,0,0) and (1, 1,0) are stationary solutions of (2.15).

Since ,9(.), ?1) e A*, we have the following remark:

Remark 2.-1. System (1.1) is persistent (uniformly persistent, permanent) if and

only if System (2.15) is persistent (uniformly persistent, permanent).

For /* € H(f),let us consider the following equation

i :  f * ( t , r ) . (2.r7)
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Since /" € H(f), there is a sequence {t.) c R such that f6 ---+ /* as 72 + oo.
Since 9:  (B,D,Pt ,Pz, l  ,c ,Ao,0r)  arc uni formly a lmost  per iodic ,  there ex is ts
a subsequence { r ,o}  such that  9,*  -  g*  :^(B: ,D*,Pf  ,P i , l * ,c* ,06,0 i )  u .

k -- oo. By Lemma 2.5, (5,-*,1"*u) - (S*,1-) as k -* oo. Therefore, by
making the change of variables

(2 .18)

in (2.1) we get (2.I7). Thus we have the following remark.

Remark 2.2. For each /* e H(f) there exists a unique 9* e H (9 being such
that /. is obtained by making the change of variables (2.18)).

We will obtain conditions for permanence of the system (2.11) via analyz-
ing the skew-product semi-flow corresponding to (2.11). In the following we
introduce this semi-flow.

Let us set,t: H(f) x,R| (with the product topology).
Denote by *(f*,16,1) the solution of the system (2.1) such that r(0) : rs.

It is clear that this solution can be continued for all , > 0. Define the map
f I :  X x  R + * . t b y s e t t i n g

I I ( ( " f . ,  ro) , t )  :  ( f i , rU. , ro , t ) ) . (2 .1e)

It is clear that tI is a semi-flow on ,t.

2.3. Permanence for a Semi-Flow

For the sake of easy accessibility, we now recall some defi.nitions and well-known
results on persistence for semi-flows.

Let t be a complete metric space (with metric d) which is the closure of an
open set t0; that is, t: tol)\to,where )to (assumed to be nonempty) is the
boundary of t0. Let iD be a semi-flow or semi-dynamical system on t, i.e., a
continuous mapping iD : R1 x t '-. t with the following properties:

iDtO" -  Qt+" ,  t ,s  )  0 ;  O6u :  ufor  a l lu  € t , (2.20)

where Oi denotes the mapping fuom t into t given by O1(u) : O(t,u). A set
U c t is said to be forward (or positive) invariant if Qil C [/ and invariant if
OtU : [/, for all t, € R+.

We assume that Or satisfies

Q1 : to -. to, Q, : \to -- flf,,o, (2.2r)

i.e., to and dto are forward invariant. Denote by O? the restriction of 01, on
0t. The positive orbit 7+(u) through u is defined by t+(") : lJ O1u. The

c,,'-limit set of the orbit through u is defined as

,(") : {u e t : 3{t,} c 10, +oo) such that ,\a r, : *oo, ,$ Or., '-- ,}.

r L ( t ) :  = l - s ( t ) ,  r 2 f t ) :  = l - r t t l ,  qQ) :Y ( t )
5-  ( t )  I *  \ t )
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An orbit through u is a continuous mappin1 d: R -- t such that @(0) : u o,nd
OrdU) :0 ( t+ r ) , t  e  R+ , ,  €  rB .  The  range  o f  /  i s  deno ted  by7 ( r ) .  No te
that the orbit through u may not exist, and even when it exists, it may not be
unique. It is easy to see that through each point u of an invariant set [/ there is
at least one orbit 1@) c U.

For an orbit 7(z), the o-limit set is defined as

a-,(u) : {u e t : 3{t,} C (-m,01 such that 
,\rg 

tn : -@, j$ Ot.u -- u;.

Let U be compact and invariant. The stable set and unstable set of [/ are
respectively defined as follows

W"(U) :  {u  € t  :  u(u)  I  A,  w@) c U} ,

W"(U) : {u e t : there exists an orbit 7(u) such that a",(") * A, ar(u) c U).

A nonempty invariant subset of t is called an isolated invariant set if it is a
maximal invariant set of a neighborhood of itself.

Let U, V be isolated invariant sets (not necessarily distinct). [/ is said to
be chained to I/, write U --+ V, if there exists an element u / U U V such that
u € W"(U) nW"(V). A finite sequence Ut,Uz,...,Up of isolated invariant sets
will be called a chain if Ut - Uz---+ ... --) Un (Ut + Ut if k : 1). The chain is
called a cycle if Ut : U*.

The particular invariant sets of interest arc u(0t0.) : Uue6€o w(u). a(lto)

is said to be isolated if it has a finite covering U : Ui:, U, by pairwise disjoint,
compact sets U1,Uz,...,Un that are isolated invariant for O1. U then is called
an isolated covering. u()€o) is said to be acyclic if there exist some isolated
covering U :U!:r[/i such that no subset of the [/,'s forms a cycle; the covering
then is called acyclic.

The semi-flow iD1 is said to be dissipative if there is a bounded set [/ such
that l iml-16 d(Q1u,U) : 0 for all u € t.

The semi-flow O1 is said to be persistent (with respect to lto) if for any
u € to we have liml--.- d,(Qp,Afo) > 0, where d,(Qg,Oto) is the distance
from Olu to 1to.

If there is an e ) 0 such that, for arry u € t0, liml-..- d,(Qg,at0) > e, then
01 is called uniformly persistent.

Theorem 2.5. (see l2]) Suppose that Q1 satisf,es (2.2I) and we haue the fotlou-
Lng:
(i) There is a ts ) 0 such that Q1 is compact for t ) ts,

(ii) Or 'is d'issipat'iue in €,
(iii) o(St0) 'is ,isolated, and, has acycl'ic couering U : l)!:rUo

Then Q1 is un'iformly pers'istent i,f and onlE i,f for each Ui

W " ( U ) n t o : A . ( r  r r \
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3. Persistence for System (1.1)

Let us denote by E1 the Y-axis or r3-axis, E2 the positive cone of the S/-plane

or rrr2-plarre. Put E: ErU Ez. It is easy to see that solutions of (1.1) (or

(2.15)) through points in Ofif \ E all move directly into the interior of nf .

Thus (1.1) (or (2.15)) is uniformiy persistent with respect to d,Bf if and only

if it is uniformly persistent with respect to ,8.

We now go back to consider the semi-flow fI defined by (2.19). Write
nt(f*,") :  n((/.  ,r), t).  we set \xo : H(f) 

" 
E, xo : .Y \ axo' I t  is

clear that
IIr(.Yo) c No, lrt(aYo) c aNo,

w(7xo )  :  lH ( f )  x  {o (0 ,0 ,0 ) } l  u  [ n ( / )  '  {Q (1 ,  1 ,0 ) } ] .

Moreover, (2.15) is uniforrnly persistent with respect to E if and only if IIi is

uniformly persistent with respect to }Xo.

Lemma 3.L. H(f) x {O(0,0,0)} is isolated, inuari 'ant with respect tofI1. More-

ouer, there is no (f*,ro) e Xo such thatl lr(,f-, *o) - H(f) 
" {O} as t ---+ *oo.

Proof . We will show that there exists a neighborhood V of the set U (f ) x {O}
such that H(f) x {O} is a maximal invariant set in this neighborhood.

Put,9,rz : supt€R 31t1, 7, : supten i(t).

Let s* e H(g).By ( I Ia) , , I ,T_ # I {  n. t r ,0)dt : , IT_ i  I {  gU,0)d,  > 0.

Since g* (t, X) is uniformly almost periodic in t, g* (t, X) is uniformly continuous
on any set of the form ft x K, where K is a compact subset of [0,+oo). Thus,
there exists €r ) 0 such that

By (H+), there exists €z ) 0 (ez 3 er) such that P;(t,X) < 1X for all X e

l 0 , e 2 l , t € R , P ; e H ( P ) .

P u t  , s : ! ,  K : t o , * - l  x ; 0 , $ l  x [ 0 , e 3 ] ,  v : H ( f ) x K ." 21 4Su' 
' '  

4lpr

We will prove that H(f) x {O} is a maximal invariant set in V.
Suppose that it is false, i.e., there exists an orbit 7(/*, rs) such that 7(/*, rs)

c y \ H(/) x {O}. Thus, the following problem

r :  f * ( t , r ) ,  r ( 0 ) :  r o

has a solution r(t) defined on rR which satisfies r(/) € K for all I e fi. Con-
sider th-e system (2.1) which is corresponding to /* (see Remark 22).^Let

13.Lr)aFil l; be the positive almost periodic solution of (2.3). Since (S.,7]) e

H(S,I), suPte,sS-(l) : '914, sup1.p I-(t) : IM' This implies that S(t) :

11( l ) ,9 . ( l ) ,  1( t )  :  12(17f t ) ,Y( t )  :  rs( t )  is  asolut ionof  (2.1)and (^9,  I ,Y)( t )  e

l0,e2l4] x [0,e3] for all t e l?

e t S S n t l I P r ,

1  f r  1  f r  ( 3 .1 )

_ l i m  i  I  s . ( t , e t ) d t : _ l i 1 - a  I  s Q , e 1 ) d t > r > 0 .
t - a  I  J o  t - a  t  J o
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By Theorern 2.3, y(0) > 0. Thus, X(0) : ,S(0) + 1(0) > 0. Since 0 <
Y(t) < e3, it follows from (2.1) that

x > B* (t, x) - D. (t, x) - P; (t, x)Y(t)
) B* (t, x) - D. (t, x)

) es.yX : xls. ft, r) - 
;)

Thus, x(f) > x(qel:ls*$,e2)-r/2ld's for all t > 0.
Since 

"!p_ 
I{ |tn.G,e2)-rl2ld,s > rl2 > 0 (by (3.1)), Iimt-+* X(r) : 1*.

This contradiction implies that H(f) 
" {O} is a maximal invariant set in the

neighborhood V.
We now prove the second assertion. Suppose that it is false, i.e., there

exists (/*, rg) e Xo such that flt("f*, *o) - H(f) x {O} as f ---+ *oo. Thus,
there exists to > 0 such that IIr("f*, rs) e V 

^for 
all t ) te. By the same

argument given before, we get X(t) > xltopJi"In-(t 's2)-r/2lds for all t > to.
Thus, liml*+- X(t) : *oo. This is a contradiction and the Iemma is proved.

Lemma 3.2. Let
1 rr  ,  , \  ,  , , ,pr( t , .?(r))3(t)  - r  p2(t , -? i ty; i1r ;1, ,

hold,. Then H(f) x {(1,1,0)} ' is'isolated inuariant. Moreouer, there is no point
( f*  , ro) € Xo such that l \ ( f  .  

, ro) -  nU) x {(1, 1,  0)}  as t  + 1.oo.

Proof. Let f. e H(f).Consider the system (2.1) which is corresponding to /*
(see Remark 2.2). It is easy to see that

-t i* + [ '  l-r-(r,o; + ".1r;Pi(t ' f .(t))^9.(2+ 
P;G'ft.(0)7(0lar r o.' 1  -a  t  Jo  L  X- ( t )  I

For sufficiently small e ) 0, let us set

b * ( t , e ) :

(3 .3 )

(.s-(r) - e)pift,f.(t) - 2e) + (7ft) - e)pf (t,ft.1t]) -zr1- f * ( t , e )  + c + ( f )  \ "  \ '  "  "  - t l - - - : - l - r  " i - 2 t " " '

By (3.3), there exists a positive number €0 such that

1 f r
_ l i m f  l U * ( t , e s ) d , t > 0 .  ( 3 . 4 )
1 + @  t  J O

It suffices to show that there is no solution of (2.1) which satisfies ̂ 9(f6)+1(f6) >
0, v(to) ) 0 and ls(r)-^9(r) l  < es, l /(r)- i(r) l  < .0, ly(r)| .< ee for alt r ) ro. To
this end, we suppose that it is false. From (2.1), we get 

h"Ul 
> y(t)b* (t,es).

Thus, for 7 ) to, 
rt

Y( t )  >Y( ts )  exp{  |  u .  G,cs)ds} .
Jt"
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Thus, it follows from (3.4) that limt-+ *Y (t) : +oo, which contradicts Y(t) <
es for all t ) ts. The lemma is proved.

The following is our main result:

Theorern 3.3. Let (3.2) hold. Then (l. l) ' is permanent.

Proof. By Lemrna 2.1, it suffices to show (1.1) is uniformly persistent. In fact,
it suffices to prove that fll is uniformly persistent with respect to 0X0.

We have

u(0xo) :  lnfn x {o(0,0,0)} ]  u 111(/)  x {Q(1, 1,0)} ] .

By Lemmas 3.1 and 3.2, H(f) x {O} and H(/) x {8} are isolated invariant.
Moreover, II (f) x {O} - H (f ) x {Q}. Thus, the theorem follows by Theorem
2.5 and Lemmas 3.1 and 3.2.

Corollary 3.4. Let (3.2) hold,. Then (I. l) has a solutio, (rt,7,711t1 ,nt"n *
defined on R and whose components are bounded aboue and below by posit'iue
constants.

Proof. It suffices to show that (2.15) has a solution i(t) which is defined on
,R and whose components are bounded above and below by positive constants.
By (3.2), fll is permanent with respect to 0X0. As we mention before Lemma
3.1, f lr is permanent with respect to H(f) x 0R|. Let (/*,rs) be any point
in Xo. Consider the c.-,-l imit set u.,(/*,16). We have that 0 l r(f*,ro) C
H(f) 

" 
int(Rf), and it is closed and invariant. We define a projection P from

X onto,Rf as follows: P(f.,r): z. Then P(r(i,6s)) is closed bounded and

is contained in intrRf. Let (i, is) e u(f-,rs). Then there exists an orbit

tG, f t 'd  c  a( f * , rs)  through ( i , to) .  Let  P( l \ ,G,*d) :  r ( t ) ( t  e  rq) .  we
have that z(l) is a solution defined on R of bhe equation

t :  i f t . r ) .
Since z(l) €P(u(f*,rs), it follows that there exist positive numbers d, A such
that

6 < n i ( t )  < A  ( t : 1 , 2 , 3 ) , (3 5)

for all t e R. Since 11(/) : H(f), there exists a sequence {r.} c ft such
ilnat i,^ ---+ / as ?? --+ oo. By (3.5), without loss of generality, we assume that
r " ^ (0 ) - -+ \€  f d ,A ] .  Le t  r ( t ) be theso lu t i ono f  (2 .15 )  w i t h r (0 )  : 4 .  S ince the
right hand side of

i :  f " ^ ( t , r ) (3 .6 )

converges to the right hand side of (2.15) and r"^(t) is a solution of (3.6),
we have lhat r,. converges to i(t) uniformly on any compact subset of R as
n ---+ @. Thus, d' < u(t) 3 L, (i, : 1,2,3), for all I e E. The corollary is
proved.

The followins is an extinction result for the predator.

13
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Theorem 3.5. Let

t a T

"r,:*+ J" { - r(r,0) + c(r) ler1t, ft1tl)! -t p2(t,f frl)l }at < o (3 7)

hold,, wnere ft(fi i,s the pos,itiue almost period,ic solution to (I.2). Then
I iqrt-+- Y(t)  :0 for any solut ion ( ,9(t) ,1(r) ,  Y(t))  with ( ,S(ro),1(t6), l ' ( ts))  e
R\ for some tg € R.

Proof . For sufficiently small e ) 0, let us set

b(t, e) :: -r(r, 0) + c(t)lpr(t, ft 1t1 + e) + p2(t,,?1r; + u;l .
By (3.7), there exists a positive number ee ) 0 such that

(3.8)

l imi-..- Y(t) : g.

The theorem is proved.
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