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Abstract. We consider a model of a predator-prey population with the action of a
parasite in the almost periodic case. We establish a uniform persistence criterion for
the model.

1. Introduction

Consider the following system of nonautonomous ordinary differential equations:

SD(t, X)
=
I=1[Bo(t) + Bu(t)Y]S —

X SP(t,X)Y

— (Bott) + Arig)s - SEGIT

ID(tX)  IPy(t, X)Y o)
X Kfewaln o (1.1)

SPy(t, X) + IPs(t, X)

X i

S‘ = B(?I‘X) =

= i (S B +eft)

where X = S+ I; B,D,P,,P,,T : R x [0,400) — R are uniformly almost
periodic in the first variable; and B, 31,¢ : R — (0,+00) are almost periodic
bounded below by positive constants.

The system (1.1) was proposed by Freedman [1] to model the interactions
between a prey population X and a predator population Y with the action of
a parasite. Due to the action of the parasite, the prey populatlon X is divided
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into two classes: the susceptible class S and the infective class I. The predators
are assumed to be all infected.

The case of functions B, D, Py, Py, T, 81, B2, ¢ not depending on t-variable
was considered in [1]. The periodic case was studied in [5]. Our concern in this
paper is with the more general case in which the model is depending on time
t almost periodically. Such a generalization seems to be a natural one consid-
ering the oscillations to which any ecological parameter might quite naturally
be exposed (for example, those due to seasonal effects of weather, food supply,
mating habits, hunting or harvesting seasons, etc.).

The further assumptions on the functions of the system (1.1) are given below,
which are based on those in [1].

The function B(t, X) is the birth rate of the prey population at time ¢ and
is assumed to be independent of parasite infection. Further, it is assumed that
the birth rate increases with increasing population. Hence,

(Hy) B(t,0) =0, B(t,.) is increasing for each ¢t € R, and there exists a > 0
X)

such that lim inf B—(t’—
X —0+ X

The function D(t, X) represents the “natural” death rate of the prey popu-
lation at time ¢, that is, death due to any occurrence other than predation. It is
also assumed that the death rate increases with increasing population. Hence,
(Hz) D(t,0) =0 and D(t, .) is increasing for t € R.

In the system (1.1) all prey members are born into the susceptible class and
may be subjected to parasitism immediately after birth. The natural death
rates corresponding to each prey class are proportional to the relative densities

S I
of that class, i.e., }D(t, X) and }D(t, X) are the natural death rates of the

susceptible and infective prey populations, respectively.
If there are no predators and parasites, the prey population can be described
by the following equation, (see Egs. (1.1)):

>aforallteR.

X = Xg(t, X), (1.2)

where g(t, X) = [B(t, X) — D(t, X)]/X is the specific growth rate of the prey
population at time ¢. Due to limited resources at time ¢, the specific growth rate
is decreasing with increasing population; eventually, it becomes negative since
food supply can support only a finite population. Therefore,

1 /T
(Hz) g(t, X) is continuous on R x [0, +00); Tlir_r: T / g(t,0)dt > 0 and there

exists a > 0 such that Dxg(t, X) < —a for all (¢, X) € R x [0, +00), where Dx
denotes any Dini partial derivative in X.

The function P;(t,X) (i = 1,2) is the predator functional response of the
susceptible and infective populations, respectively. It is assumed that owing to
the action of the parasites, the infected prey has an increasingly higher functional
response than the uninfected prey. Hence,

(Hq) Pi(t,0) =0 (¢ = 1,2) and the function Ps(t, .) — Py(t, .) is increasing for

Py, X
each t € R, and there exists v > 0 such that limsup 2(t, X)

<~ for all t € R.
X—0+ X Tore
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The function T'(¢,Y) is the density dependent death rate of the predator in
the absence of prey, which should be increasing with population. Hence,

(Hs) inf;cr['(,0) >0 and T(t, .) > 0 is increasing for each ¢t € R.

Let us denote by Ri the set {(S,1,Y) € R:S>012>0Y > 0},
H(t, S, 1Y) (H: Rx R} — R3) the right hand side of (1.1). The following
hypothesis is needed for technical mathematical reason, in fact, this condition
ensures that the theory of skew-product semi-flows is applicable.

(Hg) The vector function H is locally Lipschitz in (S, I,Y) uniformly in ¢.

The function c(t) represents the proportion of prey that is converted to preda-
tor biomass. The function Bo(t) represents the infection rate of susceptible prey
in the absence of predators, the function Bi(t) is the rate per unit predator of
prey infection due to parasitic reproduction in the predator population. In the
system (1.1) we assume that all predators are infected. Hence, susceptible prey
infected by parasites are removed from the susceptible class at a specific rate
of Bo(t) + A1 (t)Y, and an equivalent number of prey are added to the infected
class.

For the ecological significance of the system (1.1), the reader is referred to
[1]-

We say that (1.1) is persistent if liminf; oo d((S(t),I(t),Y(t)),0R3) >0
for any solution to (1.1) with initial conditions (S(to), I(to),Y (to)) € int(R3) -
the interior of R = {(S,1,Y):$>0,1>0,Y > 0}, where d((S(t), I(t), Y (1)),
813?}1) is the Euclidean distance from (S(t),I1(t),Y (t)) to OR3 - the boundary of
Ry
If, in addition, iminfy o0 d((S(@), I(t),Y (t),0R}) > & > O where & does not
depend on positive initial conditions, then (1.1) is said to be uniformly persistent.
The system is called dissipative if there emsts a positive constant M such that
lim sup,_, | o |S(t)] € M, imsup;_, ;o [I(t)] < M, limsup,_, o, Y ()| < M.

If the system is uniformly persistent and dissipative, we say that it is permanent.

Permanence theory has developed into a mathematically fascinating area for
its significance in the differential equation models in population dynamics. It
formalizes the concepts of nonextinction (uniform persistence) and nonexplosion
(dissipativity) for the considered species.

For a survey of permanence theory, the reader is referred to Hutson and
Schmitt [3], Waltman [7].

Our purpose is to give a sufficient condition for permanence of the system
(1.1). The approach in this paper is based on analyzing the skew-product semi-
flows associated with (1.1). The reader is referred to Sell [4] for background on
skew-product flows. For the theory of almost periodic functions, see Yoshizawa
8].

The paper is organized as follows: In Sec. 2 we study behavior of solutions
of the system (1.1) in the absence of preys and in the absence of predators
respectively. The skew product semi-flow is introduced here. We also recall a
well-known result on persistence in semi-flows. Sec. 3 contains our main result
on permanence of (1.1).
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2. Preliminaries

2.1. Asymptotic Behavior of Solutions of the System (1.1) on the Boundary of
R}

Let us denote by int R}, dR3 the interior and the boundary of R2, respectively;
A, the set of all almost periodic functions from R into R which are bounded
below by a positive constant.

Let F(t,2) (F: RxQ — R", Q ¢ R%) be uniformly almost periodic in . We
recall Bochner's criterion for the almost periodicity: F(t, x) is almost periodic in
t uniformily for x €  if and only if for every sequence of numbers {1, }35_,, there
exists a subsequence {7, }72, such that the sequence of translates {F(Tm, +
t.x)}Rey converges uniformly on R x K, where K is any compact subset of Q.

Denote by F. the r-translation of F; that is, F, (t,x) = F(t + 7,z), H(F)
the hull of F; that is, the closure (in the compact open topology) of the set
{F : 7 € R}. We have H(F) is compact, and F*(t,z) is uniformly almost
periodic in ¢ for all F* € H(F).

Define G = (B, D, P, P,,T', ¢, 30, 51). For each G* = (B Dn P P N
B5,67) € H(G), let us consider

$=B(t,x)- 22X 1oy greyyis - 5131(;%)3’
I= (g0 + air)s - LX) IBGXY 2.1)
¥ =¥ |0 1) + o 2L X) S IR X)

It is easy to see that the system (2.1) satisfies (H;)~(Hg). By (Hs), the Cauchy
problem for (2.1) with the nonnegative initial values has a unique solution. It is
easy to see that R:j_ is positively invarignt with respect to (2.1). The boundedness
of solutions of (2.1) is shown by the following lemma.

Lemma 2.1. For the system (2.1), there exists a positive number L such that

the set B = {(8,1,Y) € R} 1 cy(S+1)+Y < L}, where cpy = sup c(t), is
teR
strongly attractive with respect to Rﬁ_.

Proof. By (Hs) there exists K > 0 such that g(t,K) < —1forall t € R. Put

L=cyK+cy  sup {B(t,X)—D(t,X)}/inf I'(¢,0).
(&, X)eRxR3 teR

It is easy to see that

cm =supc’(t), g*(t,K) < —1 forallt e R,
teR

L=cuK+ecy sup {B*(t,X)- D*(t,X)}/ inf [*(¢,0),
(t,X)ERxR3 t€R
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where ¢*(t, X) = [B*(t,X) — D*(t, X)]/X.
Let (S(t),I(t),Y(t)) be any solution to (2.1) with (S,I,Y)(to) € R} for
some typ € R. We have

b [emX (8) + Y (®)] < em[B*(t, X(t)) — D*(t, X (1))] = T*(t, Y ()Y (t)

dt
<cm[B*(t, X(t) — D*(t, X (1))] — T*(t,0)Y ().
(2.2)

If cps X () + Y () > L for some t > to then either X(¢) > K or X(t) < K and

d
Y () > L — cpyK. Thus, (2.2) implies that e [emX(t) + Y(t)] < 0 whenever
e X(t) + Y (¢) > L. This proves the lemma.

By Lemma 2.1, the solution (S(¢),1(t),Y(t)) of (2.1) with initial values
S(te) = So > 0, I(tg) = Ip > 0, Y(tg) = Yo > 0 can be continued for all
t > 1p.

It is easy to see that the Y-axis is invariant and solutions initiating on the
Y-axis approach the origin 0(0,0,0) as t — oo, representing starvation of
the predator in the absence of any prey. Also the SI-plane is invariant and
the subsystem in this plane represents the prey population in the absence of
predators:

. SD*(t, X 1
§=B@x) - L8 g
Imgﬁ) 2
I=063)8 - ~ s Uy vi
Adding the two above equations we get the equation
X = Xg*(t, X), (2.4)

where g*(t, X) = [B*(¢t,X) — D*(¢t,X)]/ X.
In order to analyze the asymptotic behavior of solutions of the equation (2.4)
we use the following lemma in [6].

Lemma 2.2. Let ® : R x [0,400) — R be uniformly almost periodic in the first
variable and satisfy:

PO =
(i) Tl_lg_loo f/g ®(t,0)dt > 0 and

(ii) there ezists & > 0 such that Dx®(t, X) < —a for all (t,X) € R x [0, +00),
where Dx denotes any Dini partial derivative in X.
Then the following problem

X = X0t X), X()e€ A, (2.5)

(A, is the set of all almost periodic functions from R into R which are bounded
below by a positive constant) has a unique solution X*(.). Moreover, if X(t)
is any solution of the equation in (2.5) with X (to) > 0 for some tg € R then
t—1§+moo |X () — X*(t)| = 0.
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By Lemma 2.2, the problem (2.4) with X(.) € A, has a unique solution, say
X*(). ’
For the system (2.3), we have the following result.

Theorem 2.3. System (2.3) has a unique almost periodic solution (S*(t), I*(t))
whose components are bounded below by positive constants.

Moreover, S*(t) + I*(t) = X*(t), where X*(.) is the unigue solution in Ay
of (2.4), and tlim |S(t) — S*(t)] = 0, tli_,l? |[I(t) — I*(t)] = 0 for all solutions
(S(2),I(t)) of (2.3) with the initial conditions satisfying (S(to),I(t0)) € R2 \
{(0,0)}. '

The following lemma is needed for proving Theorem 2.3.

Lemma 2.4. Let a(t) and b(t) be almost periodic functions such that a(.) € A4

T
and lim l/ b(t)dt > 0. Then the equation
T—POOT 0 ,
X =a(t) - bt)X (2.6)
has a unique solution X°(.) € Ay. Moreover, we have tlim IX°) - X@®)| =0
—00
for any solution X (t) of (2.4) with the initial value satisfying X (to) = Xo > 0.
Proof. It is easy to see that (0,+ooc) is invariant. Let us consider (2.6) for
X € (0,+00). By the change of variable X = 1/X in (2.6) we get an equation

which has the form of the equation in (2.5). The lemma follows by using Lemma
2.2.

Proof of Theorem 2.3.
(i) Ezistence. Since X*(t) is a solution to the equation (2.3), we have

%lnX*(t) = B*(t, X*(t)) — D*(t, X*(¢)).

Since X *(.) is bounded above and below by positive constants, we get

lim l/T [B*(t, X*(t)) — D*(t, X*(¢))]dt = 0.
0

T—o0
By (H;), there exists € > 0 such that B*(t, )?*(t)) > ¢ for all t € R. Thus,
T
Tl}—rgof { D*(t, X*(¢))dt > 0

By Lemma 2.4, the problem

e (t, X* (1))

i B*(t, X*(t)w) — [D* X*(t) + ﬂg_(t)jI S, §()e Ay, (2.7)

has a unique solution, say 5*(.), and the problem
D(t, X*(t))

0 I, I() e Ay, (2.8)

I=8®5 -
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has a unique solution, say /i *(.). We now consider
D*(t, X*(t))

X = B*(t, X*(t)) 10

X, X()eA;. (2.9)
It is not hard to see that )’(:*() and §*() + f*() are two solutions to (2.9). By
the uniqueness in Lemma 2.4 it implies )/(\'*(t) =5 (t) + I*(2).

(ii) Attractivity and uniqueness. Suppose that (S(t), I(t)) is any solution to
(2.3) with initial conditions satisfying S(to) > 0, I(to) > 0 and S(to) + I(to) > 0
for some ty € R. Since X(t) = S(¢t) + I(t) is a solution to (2.4), we have, by
Lemma 2.2, that tl}gloo | X () — X*(t)| = 0. From (2.3) we get

918" - 5](6) = ~u() [R*(0) — 5] +v(e), (2.10)
where u(t) = %T)@J + G5 (t) and

D*(t, X(t)) D*(t, X*(1)
= S S(t).

X(t) X*(t)

Clearly uy = infiegr{u(t)} > 0. By (Hj), there exists k > 0 such that
Sup,cg g*(t, k) < 0. It is not hard to see that S(t) < X(t) < max{k, X(to)}
for all ¢ > to. Thus, since lim¢— o0 | X (t) — X*(t)| = 0, we have v(t) — 0 as
t — +00. N

We claim that lim;—, o |S*(t) — S(t)| = 0.

Indeed, there are two exhaustive possibilities: (a) there exists t; > tg such

v(t) = B*(t, X*(t)) — B*(t, X (t)) +

{ -~ .
that % [S’{f} - S{_i’)} # 0 for t > ty, and (b) there exists a sequence {s,};—; in

y:
I ]~ 3
[tn,+o0) such that for n > 1, s, < sp41, r;_i{s* — 8)(s,) =0 and s, — +oc as
n — 00. N & R

If (a) holds, then lim¢ 400 (S* — S)(t) exists. If lim;oo(S* — S)(t) # 0,

then since u(t) > ur > 0 and v(t) — 0 as t — +00, (2.10) implies the existence

d %
of numbers o > 0 and t2 > t; such that IE(S* — S) (t)‘ > « for all t > to. This

contradicts the boundedness of (S* — S)(t) on [tg, +00). Therefore, if (a) holds
then lim, 4o [S*(t) — S(t)] = 0.
If (b) holds, let 7, € [sn, Snt+1] be chosen for each n > 1 such that
5% (ra) — S(ra)) = max [S*(t) - S(¥)|. (2.11)
5n<t<sn4a
. d =, 4 d, =,
Since E(S —8){(s,) = 0forn > 1, it follows that d_t(S —S)(mn)=0forn >1.
Therefore, by (2.10), S* (1) = 8(7p) = v(7)/u(7y). Since u(r,) > uz, > 0 and
v(t) — 0 as t — +oo, we have
lim (§*(7n) — S(1n)) = 0. (2.12)
Since 7, — 400 as n — oo, (2.11) and (2.12) imply that 5*(t) — S(t) — 0 as
t — +o0.
Since (a) and (b) are exhaustive, the claim is proved.
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Thus, since X*(t) — X () — 0 as t — 400 and X (t) =-S(t) + I(t), we have
that T*(t) — I(£) — 0 as t — +oo. The attractivity is proved. The uniqueness is
a consequence of the attractivity.

The theorem is proved.

Let us denote by X (t) the unique positive almost periodic solution of (1.2),

—~

and (S(t),I(t)) the unique almost periodic solution of

S=B{tX)- ED(%X) = Bo(?)S, (213)
2.13
I=06()S - I—-D(Xt’X) ‘

Lemma 2.5. Let {7,} C R be a sequence such that B, , D, Bor, converge to
B*, D*, 8%, respectively in the compact open topology as n — oo. Then Sy, I,
converge to S*, I*, respectively, in the compact open topology as n — oo.

Proof. Since (§(t),f (t)) is almost periodic, there exists a subsequence {7, }
of {m.} such that (§Tnk (t),f,ﬂk (t)) converges to some almost periodic function
(S°(t), I°(t)) uniformly on R as k — +oo. Consider

SD., (t X)

5= B (590 — % ~ Bora, ()5,
. D, (t,X) @14)
Loty DSty e

Since the right hand side of (2.14) converges to the right hand side of (2.3)
uniformly on any compact subset of R x R, (5°(t), I°(¢)) is a solution of (2.3).

The uniqueness in Theorem 2.3 implies thet §*(t) = §°(t) and T*(t) = I°(¢) for
all t € R. Since {(S,,Ir,)} is relatively compact, the lemma is proved.

2.2. The Skew-Product Semi-Flow

5 & = f(t,z), (2.15)

(f: R x R} — R?), be induced from (1.1) by making the change of variables
1 1

21 (t) = %S(t), z2(t) = ﬁt_)l(t)’ z3(t) = Y (1), (2.16)
where (S(t), I(t)) is the solution of (2.13) as in Theorem 2.3. /

It is clear that (0,0,0) and (1,1,0) are stationary solutions of (2.15).
Since S(.),I(.) € A, we have the following remark:

Remark 2.1. System (1.1) is persistent (uniformly persistent, permanent) if and
only if System (2.15) is persistent (uniformly persistent, permanent).

For f* ¢ H(f), let us consider the following equation
& = f*(t, ). (2.17)
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Since f* € H(f), there is a sequence {t,} C R such that f;, — f* asn — oo.
Since G = (B, D, Py, P»,T, ¢, Bo, 51) are uniformly almost periodic, there exists
a subsequence {7,,} such that G,, — G = (B*,D*, Py, Py,T™*, c¢*, 8%, 07) as

k — oco. By Lemma 2.5, (ank,ffnk) — (§*,T*) as k — oo. Therefore, by
making the change of variables

e E*%)—S(t), )2 T*L(t)f(t), z3(t) = Y(2) (2.18)

in (2.1) we get (2.17). Thus we have the following remark.

Remark 2.2. For each f* € H(f) there exists a unique G* € H (G being such
that f* is obtained by making the change of variables (2.18)).

We will obtain conditions for permanence of the system (2.11) via analyz-
ing the skew-product semi-flow corresponding to (2.11). In the following we
introduce this semi-flow.

Let us set X = H(f) x R%. (with the product topology).

Denote by z(f*,zo,t) the solution of the system (2.1) such that z(0) = xo.
It is clear that this solution can be continued for all ¢ > 0. Define the map
II: ¥ x Ry — X by setting

I((f*, @o), t) = (f¢, 2(f*, %0, 1)) (2.19)

It is clear that IT is a semi-flow on A'.

2.3. Permanence for a Semi-Flow

For the sake of easy accessibility, we now recall some definitions and well-known
results on persistence for semi-flows.

Let £ be a complete metric space (with metric d) which is the closure of an
open set £%; that is, £ = £2U HEC, where OEC (assumed to be nonempty) is the
boundary of £°. Let ® be a semi-flow or semi-dynamical system on &, i.e., a
continuous mapping ® : Ry x £ — & with the following properties:

P, = Dy, t,520;, Pou=uforalluecf, (2.20)

where ®; denotes the mapping from & into £ given by ®:(u) = ®(¢,u). A set
U C € is said to be forward (or positive) invariant if ®;U ¢ U and invariant if
o, U="U,forallt e Ry.

We assume that ®; satisfies

P, : E0 — E°, &, : AEY — 980, (2.21)

ie., £ and HEC are forward invariant. Denote by ®2 the restriction of ®;, on

OE. The positive orbit v+ (u) through u is defined by y*(u) = |J ®u. The
30
w-limit set of the orbit through u is defined as

w(u) = {v e &:IH{tn} C[0,+00) such that Jim £, = +oo, lim & u— v}.
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An orbit through u is a continuous mapping ¢ : R — & such that ¢(0) = u and
Q:6(7) = ¢p(t + 7), t € Ry, 7 € R. The range of ¢ is denoted by v(x). Note
that the orbit through u may not exist, and even when it exists, it may not be
unique. It is easy to see that through each point u of an invariant set U there is
at least one orbit v(u) C U.

For an orbit y(u), the a-limit set is defined as

oy (u) = {v € £ : 3{t,} C (—o0,0] such that tlim tn = —oo, lim &, u— v}.

Let U be compact and invariant. The stable set and unstable set of U are
respectively defined as follows

We(U) ={u € & :wlu) #0, wlu) c U},

W*(U) = {u € £ : there exists an orbit y(u) such that o (u) # 0, a,(v) C U}.

A nonempty invariant subset of £ is called an isolated invariant set if it is a
maximal invariant set of a neighborhood of itself.

Let U, V be isolated invariant sets (not necessarily distinct). U is said to
be chained to V, write U — V/, if there exists an element u ¢ U UV such that
u e WHU)NWs4(V). A finite sequence Uy, Uy, ..., Ux of isolated invariant sets
will be called a chain if Uy — Uy — -+ — U (Uy — Uj if k = 1). The chain is
called a cycle if U; = Uy.

The particular invariant sets of interest are w(9€°) = J,cgg0 w(u). w(8E°)
is said to be isolated if it has a finite covering U = Ule U; by pairwise disjoint,
compact sets Uy, Us, ..., Uy that are isolated invariant for ®;. U then is called
an isolated covering. w(AE°) is said to be acyclic if there exist some isolated
covering U = Ule U, such that no subset of the U,’s forms a cycle; the covering
then is called acyclic.

The semi-flow ®; is said to be dissipative if there is a bounded set U such
that limy_, 4o d(Pyu,U) =0 for allu € &.

The semi-flow ®, is said to be persistent (with respect to 8€°) if for any
u € &% we have lim;_, 4 o0 d(Pru, 0E) > 0, where d(®;u,dE) is the distance
from ®,u to OE°.

If there is an £ > 0 such that, for any u € £°, lim;_, 4o d(®su, OE®) > ¢, then
®; is called uniformly persistent.

Theorem 2.5. (see [2]) Suppose that ®; satisfies (2.21) and we have the follow-
mng:
(i) There is a tg > 0 such that ®; is compact for t > tg,
(il) ®@; is dissipative in &,
(iii) w(9EY) is isolated and has acyclic covering U = \Jt_, Us.
Then ®; is uniformly persistent if and only if for each U,

WS(U)NE® = 0. (2.22)
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3. Persistence for System (1.1)

Let us denote by E; the Y-axis or x3-axis, E» the positive cone of the S/-plane
or x1xe-plane. Put E = E; U Es. It is easy to see that solutions of (1.1) (or
(2.15)) through points in dR3 \ E all move directly into the interior of R3.
Thus (1.1) (or (2.15)) is umformly persistent with respect to OR3. if and only
if it is uniformly persistent with respect to E.

We now go back to consider the semi-flow II defined by (2.19). Write
IL(f*, x) = I((f*, x),t). We set X% = H(f) x E, X° = X\ 0X". It is
clear that

I, (Xp) € X°, M (8X°) c 8X°,

w(@X°) = [H(f) x {0(0,0,0)}] UH(f) x {Q(1,1,0)}].

Moreover, (2.15) is uniformly persistent with respect to E if and only if II; is
uniformly persistent with respect to 9X°.

Lemma 3.1. H(f)x{0(0,0,0)} is isolated invariant with respect to Il;. More-
over, there is no (f*,zo) € X° such that IL;(f*, o) — H(f) x {O} ast — +oo.

Proof. We will show that there exists a neighborhood V of the set H(f) x {O}
such that H(f) x {O} is a maximal invariant set in this neighborhood.
Put Sy = sup,er S(t), Im = sup,eR I(t).
Let g* € H(g). By (Hy), lim % L[ g*(t,0)dt = Jim L[ g(t,0)dt > 0.
T—+o0
Since g* (¢, X ) is uniformly almos‘c penodlc in t, g*(¢t, X) is uniformly continuous

on any set of the form R x K, where K is a compact subset of [0, +00). Thus,
there exists €; > 0 such that
&1 S §M 3 TM;
I up® L 4 (3.1)
1}1_1}(1)0?/ *(t,e1)dt = I_I,I(I,OT/ g(t,e1)dt > r > 0.

By (Hy), there exists e2 > 0 (s2 < &1) such that P (¢, X) < X for all X €
[0,eq], t € R, Py € H(P).

r (25 (39)
Put e3=—, K=[0,—] x[0,=]x[0,e3], V=H(f) x K
s= g K= 2] x 0 ) x Diey (f)

We will prove that H(f) x {O} is a maximal invariant set in V.
Suppose that it is false, i.e., there exists an orbit y(f*, z¢) such that v(f*, z)
C V\ H(f) x {O}. Thus, the following problem
== f*(t,.’L‘), I(O) = Zo

has a solution z(t) defined on R which satisfies z(t) € K for all t € R. Con-
sider the system (2.1) which is corresponding to f* (see Remark 2.2). Let
(S*( ), I T*(t)) be the positive almost periodic solution of (2.3). Since (SHTie

H(S, A), upteRS’ (t) = Sur, supteRI (t) = Ip;. This implies that S() =

21 (£)8*(t), I(t) = z2(t )I*(t), Y (t) = z3(t) is a solution of (2.1) and (S, I, Y)(t) €
[0,52/4] [0,e3] for all t € R.
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By Theorem 2.3, Y(0) > 0. Thus, X(0) = S(0) + I(0) > 0. Since 0 <

Y (t) < e3, it follows from (2.1) that
X > B*(t,X) - D*(t, X) - P5 (t, X)Y (¢)

> B*(t,X) — D*(t, X)

> ey X = X[g*(t,fz) - g]
Thus, X(£) > X (0)elo ¥ )7/ g0 a1 ¢ > 0.
Since  lim ST Lig*(s,e2)—r/2)ds > 7/2 > 0 (by (3.1)), limy—, 400 X (£) = +o0.
This contradiction implies that H(f) x {O} is a maximal invariant set it the
neighborhood V.

We now prove the second assertion. Suppose that it is false, i.e., there
exists (f*,zo) € X° such that IL(f*,z0) — H(f) x {O} as t — +oo. Thus,
there exists ty > 0 such that IL,(f*,zo) € V for all £ > t5. By the same

t . .
argument given before, we get X(¢) > X (to)efto == y2s for all ¢t > .
Thus, lim;_,{ X (t) = +oo. This is a contradiction and the lemma is proved.

—~

Lemma 3.2. Let I 2 ~
Pi(t, X (8))S(t) + Pz(t,X(t))I(t)]dt >0 (3.2)

1 [T
lim —/ —T'(¢,0) + c(t =~

7 [-Te0+e) 0
hold. Then H(f) x {(1,1,0)} s isolated invariant. Moreover, there is no point
(f*,x0) € X9 such that IL(f*,xz0) — H(f) x {(1,1,0)} as t — +oo.

Proof. Let f* € H(f). Consider the system (2.1) which is corresponding to f*
(see Remark 2.2). It is easy to see that

afie] Wi 1/ o P X 0)5* (1) + Py, X (8) T (2)
lim —/O [—r (£,0) + ¢*(2) 0 ]dt>o.

(3.3)

For sufficiently small ¢ > 0, let us set

b™(t,e) =

S*(t) — )Py (t, X*(t) — 2¢) + (I*(t) — ) Py (¢, X*(t) — 2¢)
X*(t) + 2¢

—I*(¢,¢) + c*(¢) (

By (3.3), there exists a positive number £y such that

i
lim. % /0 B (¢, e0)dt > 0. (3.4)
It suffices to show that there is no solution of (2.1) which satisfies S(to)+1(to) >
0,Y(to) > 0and |S(t)—S(¢t)| < eo, [I(t)—I(t)] < €0, |Y (t)| < €o forall t > ty. To
this end, we suppose that it is false. From (2.1), we get %Y(t) > Y ()b (t,e0).
Thus, for ¢t > tg,

Y(£) > Y (to) exp{ /t B et



Persistence in a Model of Predator-Prey Population Dynamics 13

Thus, it follows from (3.4) that lim;_, 4o Y (£) = +00, which contradicts Y (t) <
gg for all t > t5. The lemma is proved.
The following is our main result:

Theorem 3.3. Let (3.2) hold. Then (1.1) is permanent.

Proof. By Lemma 2.1, it suffices to show (1.1} is uniformly persistent. In fact,
it suffices to prove that II; is uniformly persistent with respect to 8X°.
We have

w(0X°%) = [H(f) x {0(0,0,0)}] U [H(f) x {Q(1,1,0)}].

By Lemmas 3.1 and 3.2, H(f) x {O} and H(f) x {Q} are isolated invariant.
Moreover, H(f) x {0} — H(f) x {@}. Thus, the theorem follows by Theorem
2.5 and Lemmas 3.1 and 3.2.

Corollary 3.4. Let (3.2) hold. Then (1.1) has a solution (X,I,Y)(t) which is
defined on R and whose components are bounded above and below by positive
constants.

Proof. Tt suffices to show that (2.15) has a solution Z(t) which is defined on
R and whose components are bounded above and below by positive constants.
By (3.2), II; is permanent with respect to 8X°. As we mention before Lemma,
3.1, IT; is permanent with respect to H(f) x ORY. Let (f*,zo) be any point
in X%, Consider the w-limit set w(f*,zo). We have that 0 # w(f*, zo) C
H(f)x int(Ri), and it is closed and invariant. We define a projection P from
X onto R? as follows: P(f*,z) = z. Then P(w(f, &0)) is closed bounded and
is contained in intRf’L. Let (f, %0) € w(f*,z0). Then there exists an orbit
Y(f,&0) C w(f*,x0) through (f,&o). Let P(IL, (f, o)) = z(t)(t € R). We
have that z(t) is a solution defined on R of the equation

i = f(t,z).
Since z(t) € P(w(f*, zo), it follows that there exist positive numbers §, A such
that

§<mt) <A (i=1,2,3), (3.5)

for all ¢ € R. Since H(f) = H(f), there exists a sequence {7,} C R such
that an — f as n — oo. By (3.5), without loss of generality, we assume that
zr,(0) — n € [8, A]. Let Z(t) be the solution of (2.15) with Z(0) = 5. Since the
right hand side of

i=f. (t2) (3.6)

converges to the right hand side of (2.15) and z, (f) is a solution of (3.6),
we have that z,, converges to Z(¢) uniformly on any compact subset of R as
n — oo. Thus, § < %;(t) < A, (¢ = 1,2,3), for all £ € R. The corollary is
proved.

The following is an extinction result for the predator.



14 Tran Thi Loan and Trinh Tuan Anh

Theorem 3.5. Let

Tlgrloo?/{ L(t,0) + c(t)[Pi(t, X () + Pa(t, X (t) t))] }dt <0 (3.7)

hold, where () is the positive almost periodic solution to (1.2). Then
lim;_, 400 Y(£) = 0 for any solution (S(t), I(t), Y (t)) with (S(to), I(to), Y (to)) €
R3 for some ty € R.

Proof. For sufficiently small € > 0, let us set

b(t,€) := —I'(8,0) + c(t) [PL(t, X () + €) + Pao(t, X (t) +€)].
By (3.7), there exists a positive number €5 > 0 such that

T
lim. % /0 b(t, e0)dt < 0. (3.8)
Suppose that (S(t), I(t), Y (t)) is any solution to (1.1) with (S(to), I(to), Y(tg)) €
R3 for some ty € R. We have X( ) < B(t, X(t)) — D(¢, X(t)) = Xg(t, X),
for t > #y. Sinece imy .o | X(t) — X (t)] = 0 for any solution of (1.2) with
the initial value X(t3) = Xg > 0 (Lemma, 2. 2), it follows from the standard
comparison theorem that there exists a {; > fy such that X(¢) < z?(f.) + €p
for all t > t;. Therefore, Y(t) < Y (£)b(t. €0). for t > t;. This implies
that Y () < Y (t1)exp{[; b(s,eo)ds}, for t > t;. Thus, by (3.8) we have
The theorem is proved.
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