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Abstract. In this note, first we establish a fixed point theorem for eventually lip-
schitzian mappings, next we prove a fixed point theorem for mappings of uniformly
lipschitzian type and finally, we make some remarks about asymptotically lipschitzian
and asymptotically nonlipschitzian mappings.

1. Introduction

Let C be a bounded closed convex subset of a Banach space (X, ||.]|). A mapping
T : C — C is called uniformly lipschitzian if there is a constant k such that

|T"z — T"y|| < kllz -yl 1)

foralln =1,2,... and all z and y in C. Such mappings are originally considered
by Goebel and Kirk [7] and then by Goebel, Kirk and Thele [8]. They showed
that if the solution ~ of the equation v[1 —dx{(1/v)] = 1 is greater than one and
the characteristic of convexity £o(X) < 1 then every uniformly k-lipschitzian
mapping has a fixed point in C whenever k < 7 (where dx stands for the mod-
ulus of convexity). Later, having introduced a characteristic (M) of a metric
space (M,d), Lifschitz showed that in a metric space setting, every uniformly
k-lipschitzian mapping has a fixed point whenever k& < (M) [13]. This result
was then generalized by Gornicki and Kruppel for mappings satisfying (1) only
for n in a subset A of the set of all natural numbers N with the Banach density
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#(A) > 1/2 [10]. Here we employ the same method used in [13] to establish a
fixed point theorem for mappings satisfying (1) for all n > ng, where ng is an
arbitrary fixed natural number. As corollaries we get some fixed point results for
asymptotically lipschitzian mappings, asymptotically nonexpansive mappings in
a metric space setting.

In [9] Kirk has introduced the notion of mappings of asymptotically nonex-
pansive type and established a fixed point theorem for such mappings. In Sec. 4
we generalize this result for a wider class of mappings so called mappings of
uniformly lipschitzian type.

The last part of this note is concerned with compact metric spaces. In
[4] Freudenthal and Hurewicz have proved that in such spaces every surjective
nonexpansive mapping must be an isometry, and every expansive mapping must
be a surjective isometry. Later in [8] Goebel, Kirk and Thele generalized the first
result of Freudenthal and Hurewicz for asymptotically nonexpansive mappings.
This result encourages us to introduce the notions of asymptotically expansive,
asymptotically lipschitzian and nonlipschitzian mappings and establish similar
results for such mappings.

2. Preliminaries
In this section we recall some definitions which we shall use below.

Definition 1. Let (M,d) be a metric space. A mapping T : M — M s called
asymptotically k-lipschitzian if there exists a sequence of positive numbers {kn}
converging to k > 0 such that

d(T"z, T™y) < fpd(z,y)

foralln=1,2,... and all z,y in M.
In particular, if k, = k for every n € N we get the notion of uniformly
k-lipschitzian mappings.

Definition 2. If in Definition 1 we have k = 1 then we get the notion of
asymptotically nonexpansive mappings.

Definition 3. If in Definitions 1 and 2 we have the converse inequalities then we
get the notions of asymptotically k-nonlipschitzian and asymptotically expansive
mappings, respectively.

Definition 4. A mappingT : M — M is called eventually k-lipschitzian if there
is a positive number k and a natural number ng such that

d(T"z, T"y) < kd(z,y) (2)

for allm > ng and all x,y € M.

Clearly, if ng = 1 this notion coincides with that of uniformly k-lipschitzian
mappings.
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Definition 5. The Lifschitz characteristic of a metric space (M, d) is defined
as follows

k(M) = sup{B>0:3ca>1 such thatVz,y € M and r >0, d(z,y) > r
= 3z € M such that B(z,8r) N B(y,ar) C B(z,7)},

where B(z,r) denotes the closed ball of radius r centered at z.

The Lifschitz constant xo(X) of a Banach space (X, ||.||) is defined to be
the infimum of x(C) where C ranges over all nonempty closed bounded convex
subsets of X.

Definition 6. The modulus of convezity of a Banach space X is the function
dx :[0,2] — [0,1] defined by

Tty
2

The characteristic of converity of X, eo(X) is then defined to be

bx(e) = inf{1 — | ZEY||: all < 1,y < 1, o - gl > e},

sup{e € [0,2] : §x(g) = 0}.

It is known [5] that eq(X) = 0 if and only if X is uniformly convex, while if
€0(X) < 2 then X is uniformly non-square [12] and isomorphic to a uniformly
convex space [3], hence reflexive. It is also known [11, 15] that the function dx is
strictly increasing on [eo(X), 2] and continuous on [0, 2), and moreover [16,17]
for any d > 0,

r+y
lall <d Il <d, llz-yl ze = |25Y| s @-bxe/apd. @)

In [2] Downing and Turett proved that for every Banach space we have
go(X) < 1 if and only if ko(X) > 1.

Definition 7. Let {z,} be a bounded sequence in a Banach space X, and C a
closed convex subset of X. For each £ € X we denote

r(z, {z,}) = limsup ||z, — z||.
n—oQ

The asymptotic radius of {z,} with respect to C is defined by
r(C,{z,}) = inf{r(z,{z.}) : z € C},
and the asymptotic center of {xn} with respect to C is
A(C {zn}) = {z € C:7(z,{zn}) =7(C,{za})}-

It is known that if C is weakly compact (resp., convez) then A(C,{z.}) is
nonempty (resp., convez). Moreover, if X is uniformly convez then A(C,{z,})
s a singleton.
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Definition 8. Let C be a subset of a Banach space X. A mapping T : C — C
is said to be of uniformly k-lipschitzian type if for each x € C, the sequence
{cn(x)} with

ca(z) = max{sup{||T"z — T"y| — kllz — yli}, 0}
yel
tends to 0 as n — 00.

If k = 1, this reduces to the notion of mappings of asymptotically nonexpan-
sive type introduced by Kirk in [9]. Tt is clear that each uniformly k-lipschitzian
mapping introduced by Goebel and Kirk in [7] is of uniformly k-lipschitzian type.

3. A Fixed Point Theorem for Eventually Lipschitzian Mappings
Now we employ the method used in [13] to prove our first result.

Theorem 1. Let M be a complete bounded metric space and T : M — M an
eventually k-lipschitzian mapping with k < k(M). Then T has a fized point in
M.

Proof. For each y € M we define
r(y) = inf{R > 0, 3z € M such that {T"z}n>n, C B(y, R)}

with 7o mentioned in Definition 4. It is obvious that if Ty = y then r(y) = 0.
To prove the converse, let r(y) = 0 and € > 0. Then there exists = € M such
that {T™z}n>n, C B(y,€). For every n = ngo we have

d(T"y,y) < d(T”y,Tznx) + d(Tzna:, y) < kd(y,T"z) +e < (k+1)e.

Hence T™y = y for every n > ng, from this Ty = y.
Now we take any 8 such that k < 8 < x(M). By definition of k(M), there
is a > 1 such that d(u,v) > p = Jw € M such that

B(u, Bp) N B(v,ap) C B(w, p). (4)

Choose X € (0,1) such that y = min{aA, BA/k} > 1. We claim that there exists
a sequence {y,} C M satisfying

T(ym+1) < Ar(ym) and d(ymvym+1) <A+ ¥)r(Yym) (5)

forallm=1,2,..

Take any y; € M and supposing that y1,...,ym are found, we shall define
Yma1 as follows. If r(ym) = 0 we put Ym+1 = Ym- If 7(ym) > 0 then Ar(ym) <
7(ym). By definition of 7(Ym), for every & € M there is ny > ng such that

A(T™ x, ym) > A (Ym)-

In particular, for z = Y we get d(T™ Ym, Ym) > M(ym). On the other hand,
since Ar(ym) > 7(Ym), by definition of r(ym) again, there exists o € M such
that
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{Tnl'o}nzno C B(yma ’Yr(ym))'

Putting Z = T™ ¢ we consider the sequence {T"Z},>n,. For every n > ng we
have

d(Tn{i’lv Tnly’m) = d(Tn+n1‘TOv Tn1 ym) S k d(Tn:EO? ym)
< kyr(ym) < Byr(ym),
AT™Z, Ym) = AT 20, ym) < V7(Ym) < AN (Ym)-

By putting © = T™ Ym, v = Ym, p = A\r(ym) and using (3) we get
{T"2}n>no C B(T™ Ym, BAT(Ym)) O B(Ym, @1 (ym)) C B(w, Ar(ym))  (6)
with some w € M. Defining 9,1 = w, from (6) we get immediately

T(ym+1) < /\"'(_ym)-

Moreover, for any n > ng we have
d(Ym, w) < Aym, T"E) + d(T"Z,w) < (@ + 7)r(ym),

SO Ym1 satisfies (5).

From (5) it is easy to see that {ym} is a Cauchy sequence in M, hence it
converges to some point y € M. Again from (5) we get r(y) = 0 and equivalently,
Ty = y. The proof is complete, ™

Remark 1. Since each uniformly k-lipschitzian mapping is eventually k-lipschit-
zian, Theorem 1 improves Lifschitz’s theorem mentioned in Introduction. More-
over since each asymptotically k-lipschitzian mapping is eventually k’-lipschitzian
with k < k' < k(M), we obtain

Corollary 1. Let M be a complete bounded metric space and T : M — M an
asymptotically k-lipschitzian mapping with k < k(M). Then T has a fized point
in M.

In particular for k£ =1 and x(M) > 1 we get

Corollary 2. Let M be a complete bounded metric space with k(M) > 1 and
T: M — M an asymptotically nonexpansive mapping. Then T has a fized point
in M.

In particular, each nonexpansive mapping in such a space has a fixed point.
As a direct consequence of Theorem 1 in a Banach space setting, we have

Coroliary 3. Let C be a bounded closed convezr subset of a Banach space X
with kg(X) > 1 and T : C — C be an eventually k-lipschitzian mapping with
k < ko(X). Then T has a fixed point in C.
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Note that there are in literature some results similar to ours in a Banach
space setting (with go(X) < 1 instead of ko(X) > 1) due to Goebel and Kirk
[6], Lim and Xu [14], Casini and Maluta [1],...

4. A Fixied Point Theorem for Mappings of Uniformly Lipschitzian
Type

Modifying the method used by Kirk in [9] we can prove the following result.

Theorem 2. Let C be a bounded closed convexr subset of a Banach space X
with eo(X) < 1 and let T : C — C be a continuous mapping of uniformly
k-lipschitzian type with k < v, where v is the solution to the equation (1 —
dx(1/Y)) =1. Then T has a fized point.

Proof. Tt is not difficult to show that 9(X) < 1 implies v > 1 (see also [2])
s0 we may assume that £ > 1. Now taking any x¢ in C' we denote x,, = T™xzq
for m = 1,2, ... Since g¢(X) < 1, X is reflexive, hence C is weakly compact and
A(C,{z,}) is nonempty. Take any z1 € A(C, {z,}) and denote r, = r(z1, {zn}).
By Definition 8 we have

1Tz — T y|| < kllz —yll +cnlx), Yo,y € C, ¥n > 1.
So for any m > 1 we have

limsup | T"zo — Tz || =< k llmsup IT" ™z — z1]| + ¢m(21)

n—oo

=kr1 + Cm(zl)- (7)

Since C is convex, it is clear that

21+ 1™z

ry < lim sup ”T”xo - H, Ym > 1. (8)

n—oo 2
On the other hand, for each m > 1, we have

zn+T™ ZlH

HT”Q:O = —|| 1’0 = Zl (Tn.'l?() 5= Tmzl)H

By definition of r; and frorn (7) we get

limsup ||T"xo — 21|l =711 < kr1 + e {21),
n—oo

limsupd|T"zg — T 21| < kri + em(21).

n—00

From (3) and (8) we get

z214+TMn
Sl e = H
m—0o00 n—oo
: |21 ~ T™ 2|
<1 k [1 iy (%)]
< timsup (ks + em(20)) |1 = 0 (-

=kr [1—5X(limsupw)]. (9)

m—o0 kry
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If ry = r(z1,{zs}) = 0 then T"zo — 21 and, since T' is continuous, Tz = zi.
Thus, we may assume r; > 0. From (9) we get

1 . |z — 1 ”‘z1||)
< = UL o R Wt LU
% 1-4x (hm sup s ,

hence

- (10)

[ —Tmz1“) <1- ]16

ox ( lim sup .

If 6x (lim SUP,m—s 00 J"—l_—lg—:ﬂ—z—ﬂl) = 0, then by definition of go(X) we get
limsup ||z1 — T™ 21| < eo(X)kr1. (11)

m-— 00

We show that eo(X)k < 1, for this it suffices to prove that go(X)vy < 1. Suppose
on the contrary that eo(X) > 1, then we have

1 1
1>e(X)>=-=1-4x(-)
o(X) = x(v)

Consequently, dx(1/7) > 0 and hence, 1/y 2 go(X) therefore we get 1 >
go(X )7, a contradiction to the above assumption.

Now suppose that & x(lim SUP, s 00 H%;;Zﬂ) > 0. Then
z1 —IT™z
limsup | == "l 5 eox).
m— oo 1

Since the function 8 x restricted on [go(X), 2] is invertible and strictly increasing,
from (10) we obtain

: e =Tl _ e1pq Ly _gm1pp Ly 1
lmsup 22— = "N <5 (1— ) <éx (1—--)=—.
This implies
) = kry
limsup [|z1 — T 21| < — . (12)
m— oo %

Denoting o = max{eo(X)k, %} < 1, from (11) and (12) in any case we have
limsup ||z — T™z1|| < ar1. (13)
m—00

Now take any zo € A(C,{T™2}) and denote 73 = r(22, {T"21}).
So we have from (13) -

rg =1(C,{T"z1}) < (21, {T"z1}) = limsup||z; — Tzl < or.
m—00

Continuing this process we get a sequence {zm} C C satisfying
(a) 2m € A(C, {T"2m-1})s
(b) = T(zm’ {Tnzm-l}) = T(C’ {Tnzm——l})>
(c) rm < orm_1,
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(d) limsup,, . [zm — T"2ml| < 0rm .
From this we get

lzmi1 — zmll < lim sup{ || 7" 2m — Zmtt || + | T" 2m — Zml|}

n—oo

< rmt1 + arm < 20, <207 .

Since a < 1, {2} is a Cauchy sequence, hence it converges to some point z* € C.
From {c), (d) and the inequality

2" = T"2*|| < [|l2" = zZmll + l2m = T"2m|| + | T"2m — T"2"||
S M+ B2 = zmll + llzm = T 2m | + cn(2)

we get
limsup ||z* —T"z"|| =0,
mM— 00
and so z* is a fixed point of T'. The proof is complete. ™

Remark 2. For k = 1, Theorem 1 reduces to a fixed point theorem of Kirk in
[9] for mappings of asymptotically nonexpansive type. In particular, it implies a
fixed point theorem of Goebel and Kirk for uniformly lipschitzian mappings in
[7].

Remark 3. Since in Definition & we require only ¢, (z) — 0 as n — oo, the class
of mappings of uniformly k-lipschitzian type contains also the class of eventually
k-lipschitzian mappings, i.e. mappings satisfying the inequality

1Tz — T™y|| < klz = yll, Vz,y,

for all n greater than some mng. This class in turn contains the class of asymp-
totically k’-lipschitzian mappings with &' < k, i.e. mappings satisfying

||T"a: . T"y|| S kn”z N, y”a ‘v’a:,y,

with k,, — k’. So Theorem 1 also implies the corresponding results for the above
mentioned classes of mappings, in particular for asymptotically nonexpansive
mappings studied in [6].

Remark 4. If in the formula of ¢, (z) in Definition 8 we replace k by k,, converging
to k then we get the definition of mappings of asymptotically k-lipschitzian
type. Slightly modifying the proof of Theorem 2 we can get a similar result for
mappings of this type.

5. Lipschitzian and Nonlipschitzian Mappings in Compact Metric
Spaces

The first result of this section is a generalization of the first result of Freudenthal
and Hurewicz to asymptotically lipschitzian mappings.
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Theorem 3. Let M be a compact metric space and T : M — M an asymptoti-
cally k-lipschitzian surjective mapping. Then T exists and is a k-lipschitzian
mapping with k > 1.

Proof. Following the idea of Goebel, Kirk and Thele in the proof of Theorem
3.2 in [8] we construct two sequences {Z,}, {yn} with arbitrary zo, yo in M by
putting TZpy1 = T, TYny1 = Yn for n =0,1,2, ...

By compactness of M for every ¢ > 0 there are m, n with m > n such that

d(Tn, Trm) < € and d(Yn,ym) <&,

where N = m — n can be assumed arbitrarily large. Then we have
d(Tn, Tm) > kL d(T™ Tm, T™en) = k;ld(zo,TNmo).
Analogously we obtain
d(zn, Tm) > ki d(yo, T yo)-
Hence
d(To, Tyo) > kL, d(T" o, TV yo)

> kit [d(zo,y0) — (@0, TV z0) — d(yo, T yo)]

> ky' 1 ld(zo, yo) — 2¢km]-
Since ky — k > 0 and ¢ is arbitrarily small, we get

d(z,y) < kd(Tz,Ty) (14)

for all z,y € M. From this it is easy to get £k > 1, for if ¥ < 1 then we get a
contradiction to the compactness of M : d(z,y) < d(Tx, Ty) for every z,y € M,
in particular for such z’, 3’ that d(z’,y’) = diam M, the diameter of M.

From (14) we see that T is injective, and being surjective, its inverse T -1 exists.
Also from (14) we get

d(T7 'z, T ly) < kd(z,y)

for all z, y in M, i.e. T~} is k-lipschitzian. The proof is complete. ]

Remark 5. If k = 1 then 7! is nonexpansive and by the first result of Freuden-
thal and Hurewicz, T~ is an isometry and so is T. Thus we get Theorem 3.2
of Goebel, Kirk and Thele in [8] for asymptotically nonexpansive mappings.

Remark 6. Applying Theorem 3 to the mapping T for every n € N we get
d(T "z, T "y) < kd(z,y) for n € N,

so T™! is also uniformly k-lipschitzian. Thus if k¥ < x(M) then by Lifschitz’s
theorem, T~ has a fixed point, and so does T. Note that the last conclusion
can be obtained by directly applying our Theorem 1 because each asymptotically
lipschitzian mapping is eventually lipschitzian.
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- We conclude this note with a result generalizing the second result of Freuden-
thal and Hurewicz for asymptotically k-nonlipschitzian mappings.

Theorem 4. Let M be a compact metric space and T : M — M an asymptoti-
cally k-nonlipschitzian mapping. Then T is a surjective lipschitzian mapping.

Proof. First we prove that T(M) is dense in M. Take any x in M, we construct
the iterate sequence {z,} with z, = T"z, n=1,2,...

By compactness of M there exists a convergent, hence Cauchy, subsequence
{zn,}: for every ¢ > 0 there is j € N such that d(zn,,zn,) < € for every
i,k > 7. Fixing such i, k and assuming k > ¢, putting N = ny — n;, we get

€ > d(Tp,, Tn, ) = ATz, T™z) > ky, d(z, TN z).

Since k,, — k > 0 we may assume that k,, > a > 0 for ¢ > j. Consequently,
d(z,TNz) < e/a. Because z is arbitrary in X, ¢ is arbitrarily small, TVz €
T(M}, we obtain T(M) = M.

Now we take arbitrary xo, yo in M and put z,, = T"zo, yn = T"yo, n =
1,2, ... then construct a sequence {z,} C M x M with z, = (%n,yn). By
compactness of M x M, there exists a convergent subsequence {z,,}: for every
€ > 0 there is j € N such that

£

€
ATy Try) < 2 5

2 ?
for all 4, k > j. Defining N as above we have

d(Yn Yny) <

% > kn, d(xo,TNJ;O) and % S o d(yo,TNyo),

hence
£ > ky, [d(zo, TN z0) + d(yo, TV y0)].

From this we get

€+ km d(iEg, yo) > kni [d(mo, TNLL'()) + d(Io, yo) + d(yo, TNyO)].

> ki, d(TN 20, T y0) > kn, kn—1d(Tzo, Tuo).
Since k,, — k, ky—1 — k and ¢ is arbitrarily small, we have
d(Tx,Ty) > k' d(z,y)

for all z, y in M. Thus T is lipschitzian and hence continuous, consequently

T(M) is compact. Hence T(M) = T(M) = M and the proof is complete. ]

Remark 7. If k > 1 then T is nonexpansive, hence by the first result of Freuden-
thal and Hurewicz, T is an isometry and we get again Theorem 3 for asymptot-
ically expansive mappings.

Remark 8. Applying Theorem 4 to the mapping T™ for every n € N we get that
T is uniformly k~*-lipschitzian. Thus if k7! < k(M) then T has a fixed point
by Lifschitz’s theorem.
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Remark 9. With k = 1, Theorem 4 reduces to the following result:

Let M be a compact metric space and T : M — M an asymptotically expan-
stwe mapping. Then T 1s a surjective isometry.

Indeed, in this case we have that T is a surjective nonexpansive mapping, so
the conclusion follows from the first Freudenthal-Hurewicz’s theorem. This is a
generalization of the second result of Freudenthal and Hurewicz for asymptoti-
cally expansive mappings.
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