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Abstract. A generalization of the classical Langevin equation is introduced for de-

scribing a linear dynamical system of particles driven by a fractional process. An

approximate fractal equation are considered and an approximate solution is found.

The .L2-convergence to the exact solution is investigated and an estimation of error is

studied as well.

1. Introduction

The cla,ssical Larrgevin equation is one of best-known equations in physics de-
scribing the motion of a linear dynamical system of particles perturbed by some
white noise. It is of the form

dXt - -bxdt I odW1, 0 < t < T, ( 1 . 1 )

where b and o are some constants, W1 is a Brownian motion. The solution of
(1.1) is known as an Ornstein-Uhlenbeck process:

(r .2)

One of assumptions under which the equation (1.1) was established is that
the position of a particle at a moment depends only on its previous position and
not on that of long time before. In fact, the solution (1.2) is of Markov property

that expresses a loss-memory evolution of the system 12,4].
However, under certain situations, the state of the system can influence on

its long-range behavior. It is the case of motions in a fractal medium on which
some absolutely continuous limiting distribution are supported. Here the system
can not be driven by an ordinary Brownian motion Wt. And one thinks of per-

turbations expressed by a fractional Browrrian motion Bf that exhibits a long
term dependence between system states.

xt : xoe-b' + o I "-b(t-s){yy", 
0 < t <7.

Jo
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Recall that a fractional Brownian motion (fBm) of index fI e (0,1) is a
centered Gaussian process (Wf , t > 0) having the covariance given by

R(s , t )  -  r " . t  ( l r l "  +  l t l "  -  l t  -  , l r r ) , (1  3 )

where l (2 -  2H) cosrH
lcu :

rH( I  -  2H) r (refer to l3l).

In the case where H :712, wf is a standard Brownian motion. And one can
propose the following model

dXt - -bxd t+od,B{ ( 1  4 )

as a generalized Langevin equation for the fractal case. However, since W,H is
neither a Markov process nor a semimartingale for H I lf 2, the usual stochastic
calculus can not be applied to solve (1.4). on the other hand, it is known that
for 11 < Il2 the fBm Bf has a representation as follows:

By : i_ ,)lz, * l,' {, - s)--dw"f , ( 1 . 5 )

where  (W' " ,  j  >  0 )  i sas tandardBrownianrnot ion ,  a : l l2 -H e  (0 ,112) ,
and, 21: f-;1t - s)-o - (-s)-"ldW". Since 21 is of. absolutely continuous
trajectories, the long-range property of. Bf is essentially expressed by the term
I:ft - s)-od.Wl that will be denoted by ,B1 from now on.

So in this paper we consider the following model

dxt : -bxdt I odB1, 0 < t < T, (1  6 )

( 1 . 6 ' )

And the formal writing dB1 can only be considered and calculated as a dif-
ferential in this context. we will give an approximation solution of (1.6) by
substituting the fractional process 81 by a family of process (Bf ) defined below
and converging to B1 as e ---+ 0.

2. Approximate Perturbations

'wnere
f t

" , :  J o G - s ) - o d w " .  
o . o .  i ,  ( 1 . 7 )

as a fractal Langevin equation. A solution of (1.6) is defined as a stochastic
process satisfying the following relation

xr:  -b 
Io '  

x"d 's t  oB1'

F o r e v e r y e > 0 w e d e f i n e

n, : [ '  a - s -r e)-odw", o < a
J O

then by the It6 formula we can see that

I
2 ' ,

( 2 . 1 )
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(2  2 )aBi : ( - 
Ir '  

d(t - s + e)-o-r dw")dt + e-'dwr.

So (Bf, I > 0) is a semimartingale.

Theorem L. Bf conuerges to & in L2(Q) when e tends to 0. This conuergence
'is uniform w'ith respect to t e l0,Tl.

Proof. From the following elementary formula for every function / € Cl(R)

f(u + h) - f(") :  hf '(u + eh), 0 < d < 1'

we have

l ( t - " * e ) - o  -  ( t - s ) - ' l  <  0 6  s u p  l ( t -  r  r 0 e ) - " - r 1

: 
"if'-''n1-'-'' o < s < t' (2'3)

Taking into account of the isometry in the It6 theory of stochastic integration
we can see that

ElBi - B,l, : El 
Ir" l(t- 

s r e)-o - (t - sl-"law"l

The evaluation (2.3) appiied to the first term of the right hand side of (2.a)
give us:

(2.4)

will

: 
fr" l(r 

- s+ e)-o - 1t - s]-' l2as

:  
f o t - '  l { r - " + e ) - o - ( r -  s ) - ' l z d s

.  
[ , ] { t  

- ,  +  e ) - o  -  ( t  -  s ) - o l z d s .

f t - e  ^  f t - e

I  l t r - s+e ) -o  - ( r -  s ) - " l 2ds  1  a2e2  |  A -  s ) -2a -zo r .  (2 .5 )
Jo  Jo

For the second term of the right hand side of. Q.Q we have

l )_,trr-  
s + e)-o - ( t  -  s)- '12 d,s t  I :_,n 

- s)-2ods. (2 6)

It follows from (2.4), (2.5), (2.6) that

l lB f  -B , l l ' ' - a2e2  f t o -s ) - za -zo r *  [ '  f t _  s1 -2ods
J o '  J t - , '

<  C(a)er-2 ' , (2.7)

where ll . ll denotes the norm in r2(CI), and the coefficient C(a) depends only on
(\.
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Therefore
sup l lBr ' -  Br l l  <  K(a)e i - "  -  g

o<t<T

where 0 <o < ] and K(") : r/C6
So Bf converges to fu in Lz(Q) uniformly with respect to I e i0, ?1. I

3. Approximate FYactal Langevin Equations

Now instead of (1.6) we consider the foliowing equation

dxt : -bxdt * odBf .

Combining (2.2) and (3.1) yields

d,X1 : -lbX, + o(p(t)ldt * e-o odW1,

where
f t

p(t) : 
.lo "ft 

- s * e)-a.-, dW" .

And we try to find a solution for (3.2), (3.3).

The equation (3.2) can be splitted into two equations:

dxt(t) : -bXt (t)dt + e- o odW1,

dxz(t) : -bx2(t) dt - o e(t)dt.

a s € * 0 ,

(3 4)

(3 .5 )

The solution of (3.2) wil l be Xt: X{t) + X2(t). We see that (3.4) is a ctassical
Langevin equation whose solution is an ornr;tein-uhlenbeck process:

Xt(t): Xls-at t  oe-o 
fo' "-ua-oaw",

(3  1 )

(3 2)

(3.3)

(3.7)

(3 6)

where XrO is the init ial value of x1(t): : x1(0) that is supposed to be a
random variable independent of (W1, 0 < 

").The equation (3.5) is an ordinary differentiai equation for every fixed c,,, and
its solution is:

, ' t
X 2 f t ) : X l e - b t  - o  |  "  

a t r - " ) r 1 s ) d s ,
.lo

where Xru - Xz(O) independent of (W1, 0 < t < ?), and Xl + Xg is the initial
value of X1: Xg: Xl + X8.

The process cp(t) appeared in (3.2) can be simulated as follows. we have
t t

p( t )  :  
"  I  t t  -  s .+ €)-o- ldw"

. ln

N _ 1

=  o  I  ( t  -  k ! n ,  * e ) - * - r  W ( p +  r l * )  - w ( k  ) l  ( 3 . s )
t v  1 \ 'rc:U
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where l/ is the number of equal subintervals in a partition of [0,t]. The Iaw of

the fami ly  {w(& + 1)*)  -W(k*) ,0 < k < l /  -  1}  is  ident ica l  to  that  of  a

family of independent centered gaussian variables of variance * By a simulation

we can replace W ((k + 1)*) - W (k*) av srl * where (9r) is a sequence of

independent centered gaussian variables. It follows that

eft) :  o [ '  ( ,  - s + e)-o-rdw"
J O

TT I!-r t ,
= " l  * D t t - r n * e ) - o - r s t  .

K : U

Thus we have

Theorem 2. The solution of the equat'ion

dx t -  - bx td t+odB f

can be eapressed, by

Xt :  Xoe-bt  + oe o 
[ '  " -oa-  

ddws -  o [ '  " -orr - r9$)ds,Jo Jo

where g(t) can be si,mulated by

f T t
e & ) = " V ;  Q - k N t e ) - o - ' s r " ,

with sufficiently large N and a sequence of independent centered gaussian uari-

ables (9p).

Remark

(i) We see from the proof of Theorem 2 that Xt : Xr(t) + Xz(t), where
X1(t) is a loss memory process while X2(t) exhibits a Iong memory motion.

(ii) Erpectation of the solution o/ (3. 1) . Denote the mathematical expectation
and the variance of Xs respectively by a and C2, we see that:

nlxse-btl : 
"-bt 

ElXo] : ae-bt,

4l: "-b(t-")61ry"f 
:0,

nle@l - 
"t I, 

aQ - s + e)-o-rdw"f : s.

(3 e)

(3 .10)

Then
E(Xt ) :  ae-b t ( 3 . 1 1 )

(111) Vari.ance of the solut'ion o/ (3.1). In the following calculation, the isom-

etry in It6's integration is used.
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Noticing that Xo is independent of. (W1) and that (3.10) can be rewritten as

xt: xoe-b' * n 
Io "b"dw" * r 

lo' 
eb"g(s)ds, (3 .12)

(3.13)

(3.14)

(3 .15)

where h : 6-as's-bt and, k: -oe-bt, we obtain

Dl l: Dlxo"-u'l + oln [' "u"aw" * k [' eb"e1s1ar]L - ' L J o J o l

- 92"-2bt + DIhA+ kBl,

where,4 :: IJeb"d, and B :t lJeb",p(s)d.s.
Since EIA] : 0 and ElBl :0 we have

DlhA+ kBl:  El(hA+ kB)21
: h2 ElA2l + k2 ElB2l + 2hkElABl.

Now we see that

ElB2l: 
"l( I, "u"( lo 

a(t - u* e)-o-r, )ar)']

El (  [ '  @f t -u*e) -a - t  [ '  "o "ar1a  ) ' . |L \ J o  '  
J u  '  /  l

f i  ,1 ft  
"a"4sz4u

: 
Jo 

or(t _ u + e)-2"-, ,  ,u ,

: 
I, #r"" 

- 
"b\2(t 

- u+ e)-2,o-2du, :j

or

ElB2l : * r' r"0, - "b\,(t 
- u + e)-2o-2du,

o "  J o '

tB: ( 
fo' 

.u"aw")(lr '  "*( 1"" 
*U-ur e)-o-Ldw,)"ds)

: ( 
I"' 

ebudw.) 
lr' in" 

- 
"b\(t 

- u * e)_-o-td.wu,

EIABI : 
; I"' "bu("b' 

- 
"b\Q 

- u + e)-o-ld,u.

Combining relations (3.13), (3.14), (3.15) and (3.16) yields:

(3 .16)
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D[hA+kBl2 :h2 . *k2br -  l )  +  u r .#  
Io 'Gu,  

-  
"^ ) r ( t -u*  e ) -2a-zou

. t

+ zhkl |  "*ko'  
-  

"b\( t  
-  u * e)-a-t4ub J o

I: 
1e-2o 

o2 e-2bt lezbt - 11

a, op."-zut.{  [ '  , "u,  _ 
"b\z(t  

_ u + €)-2a-2dub "  J o '

= 2e_oo2e_zat.! [ ' "u.1"u, 
_ ub\e _ u + e)_o_rdu,b J o

or

DthA + k Bl : 02 e-2bt 
lj-r" r"ru, - r) + # fr' r"r, 

- ebu y2 1t - u * e)-2a -z ou

-'-= 
[' "u.pa, 

- ek)e - u+ e)-a-r6u]. (B.tz)o  J o  \  _ . _ ,  
I

Finally we find that

D[xt l :

o2e-zbtfg *  ! r -2a1"zut-  r )  + {  [ 'pu,  - .b\2(t-u*e)-za-zou
Lot 2b- \-  ' '  '  

b2 Jo .

-"# [ ' "ou1"u, 
- eb\ft - u+ e)-,-r4u]. (8.18)o  Jo  - l '

4. Convergence

A natural question should arise: Is it true that the solution of (B.l) can be
considered as an approximate solution of (1.6)?

suppose that X1 and xf are solutions of (1.6) and (B.r), respectively:

dXt -  -bxd t lodBl ,  0<  t  <  ? ,

dx f  :  -bx fd t *odBf  ,  0< t  <7 .

(4.1)

(4.2)
Now the convergeRce of Xr€ to Xt ffi e - 0 can be shown as below

Theorem 3- xf conuerges'to & in Lz(e) uniformty with respect to t e lo,Tl.
Prool. We have

x, - xf : -u 
Io'6" 

- x'")ds * o(r,1- Br),
then

ll4 - xf ll s W fo' {x"- xj)dsll + ollBl - Bill

(4.3)
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- Xilld.s + oK(a)eL-o, 0 ( t I T, (4.4)

where ll . ll denotes the norm in I2(O).
A standard application of Gronwall's lemma starting from (4.4) will give us:

l lX, -  Xf l l  < oK(a)ei-oebt.

It follows that

sup l lxr - Xf l l  < oK(a)ei-a"br,
o<t<T

in assuming b > 0 without loss of generality.
So Xr' --+ X1 in ^L2(O) uniformly with respect to t. I

Remarle. The inequality in (4.6) expresses also an estimation for square mean
error between Xf and X1.

5. Conclusion

As referred in the Introduction, the fractal Langevin equation describes more
precisely the motion of particles in a fractal medium. And we have given an
approximate solution of this equation with an arbitrary exactitude. This is an
attempt to study long memory systems that represent various phenomena in the
natural world. AIso we have overcome difficulties frequently met in considering a
system perturbed by a fractional Brownian motion without invoking hard tools
of mathematics such as Malliavin Calculus that is not easy for numerics (see

[ 1 ,3 ] ) .
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