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Abstract. This paper establishes some (ho, h, Mo)-uniform stability criteria for non-
linear differential systems by the direct method of Lyapunov.

1. Introduction

In many concrete problems such as adaptive control systems, one needs to con-
sider the stability of sets which are not invariant, so the notion of eventual
stability [3] was introduced to deal with such situations. It is subsequently rec-
ognized that although the set is eventually stable is not invariant in the usual
sense, it is so in the asymptotic sense. This observation leads to a new concept
of asymptotically invariant sets, which form a special subclass of invariant sets.
A natural generalization of the above concepts is the notion of Mo-stability (2],
which describes a very general type of invariant set and its stability behavior.

In [4] Lakshmikantham and Liu introduced a very general type of stability
called (hg, h)-stability by combining the concepts of Mg-stability and (hg, h, Mp)-
stability [4] and presented a comparison result concerning (o, h, Mp)-uniform
asymptotic stability. However, very little is known about (ho, hy Mo)-uniform
stability properties when the comparison principle fails. This paper is therefore
devoted to the development of the basic theory of Lyapunov in terms of (ho,h)-
uniform asymptotic stability employing Lyapunov’s direct method. In Sec. 2,
we give some definitions and notations. We state and prove, in Sec. 3 our main
results which establish some criteria for (ho,h, Mo)-uniform stabilization. An
example is also worked out which demonstrates the sharpness of conditions given
in the theorems.

* The project supported by National Natural Science Foundation of China (19771054).
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2. Preliminaries

Consider the generalized initial value problem

z’ = f(t’ .’l:), z(to) = Y(to,x*), to >0, (2.1.1)

where f,4 € C[R+ x R™, R"] and f is smooth enough to ensure the existence
of solutions of (2.1.1).
Consider also the comparison equation
v’ = g(t,u), u(to) = p(to,u™), to >0, (2.1.2)

where g€ C[R+ X R, R], pEe C[R+ X R, R+]
For the reader’s convenience, let us list the following classes of functions.

I'={h € C[R+ x R*, Ry] : inf h(t, z) = 0}.
K ={a € C[R4, R4] : a(u) is strictly increasing in u and a(0) = 0}.
CK = {a € C[R%, Ry] : a(t,s) € K for each t}.
KC = {0 € C|R+, R4]:0 € K and ¢ is convex}.
KC ={0c€C|Ry, Ry):0 € K and o is concave}.
CKP ={a€ C[Ry+ X R+, Ry]:a € CK and for every € > 0, there exists
d(e)>0, 7(€) >0 (7(e) =00 as e —0) such that /t0+1ho(s,¢(s,x*))ds

to

to+1
< § implies / a(s, ho(s, ¥ (s,z*)))ds <€, to > 7(€)}.

to

We also introduce the following notations.
M = M(R2,R™) is the space of all measurable mappings from R2 to R™ such
that z € M if and only if h(n, z(n, s)) is locally integrable on R and

t+1
sup/ h(n,z(n,s))ds < o0, heT.
t>0 J¢

Moy = Mo(R3, R") is the subspace of M(RZ, R™) consisting of all z(n, s) such
that
t+1
f h(n,z(n,s))ds — 0 as t — oo,
t t+41
My(h,e) ={z e M: Ilim sup/ h(n,z(n,s))ds < €}.
I t41

Mg(h,e)={z e M: rlirn sup h(n,z(n,s))ds > €}.

S(h, Mo, p) = {(n,z(n,s)) € Ry x R™ : z(n,s) € My(h,p), p > 0}.

8¢(h, My, p) = {(n, z(n,s)) € Ry x R" : z(n, s) € M§(h,p), p > 0}.

For any function V € C[R4+ x R™, Ry], we define the functions



(ho, h, Mp )-Uniform Stability Properties for Nonlinear Differential Systems 133

DYV(t,x) = 6li%1+ sup % [V(t+6, z+6f(t,z)) — V(¢ )], (2.1.3)
D_V(t,z)= 6li1(1)1_ inf % [V(t+9, z+6f(t,x)) — V(t,z)]. (2.1.4)

Let us now give the following definitions. As usual, let z(t) = z(t, s, ¥ (s, z*)),
t > s represent a solution of (2.1.1) starting at (s, (s, z*)).

Definition 2.1. With respect to system (2.1.1), the set A is said to be
(My) (ho,h, Mp)-uniformly stable if for each € > 0, there ezist 61(e),d2(e) > 0
and 7(€), T(€) — oo as € — 0, such that

to-+1
f h(t,z(t,s,(s,z*)))ds <€ for all t > 15+ L.
tn

to+1
whenever x* € S(A,0;) and / ho(s, (s, 2"))ds < 62, to > 7(¢);
b

{1}
(Mg) (ho, h, Mp)-uniformly attractive if for every € > 0, there erist positive num-
bers 810, 620, To and T'(€) such that

to+1
/ h(t,z(t,s,¢(s,z")))ds <€, t >to+ 1+ T(e), to > 7o,
to

to+1
provided z* € S(A, 510) and ho(s,¥(s,z*))ds < dg0;

to
(M3) (ho, h, Mp)-uniformly asymptotically stable if (My) and (Mz) hold together.

Definition 2.2. Let ho,h € T'. Then hg is said to be integrally finer than h

if for every € > 0, there exist §(¢) > 0, 7(¢) > 0 (7(e) — o0 as € — 0) such
to+1 0

that x*.€ A and ho(s,¥(s,z*))ds < § implies / h(s,¥(s,z*))ds < ¢,
to

to
to > 7(e).

Definition 2.3. [1] Let A : Ry — R, be a measurable function. Then A(t) is
said to be integrally positive if

/A(s)ds = +00

I
whenever I =2, [0, Bi], ai < B < 41 and B — o > 6 > 0.

We need the following known result [5] before we can proceed to prove
(ho, h, Mp)-uniform stability criteria.

Lemma 2.4. (Jensen inequality) Let ¢ be a conver (or concave) function and
y integrable. Then

o [utae) < [otwonat or o [utrat) 2 [ otuean.
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3. Main Results

In this section we shall establish several results on (hg, h, Mp)-uniform stability
and (ho, b, Mp)-uniform asymptotic stability. Let us begin with proving a result
on (ho, h, Mp)-uniform stability.

Theorem 3.1. Assume that
(i) ho,h €T and hg is integrally finer than h;
(if) V € C[R+ x R™, Ry}, V(t,x) is locally Lipschitzian in T and satisfies

b(h(t,z)) < V(t,z) < alt, holt,x)), (t,z)€ S(h, My, p),

where a € CKP, be KC,
(i) DV (t,z) <0, (t,z) € S(h, My, p).
Then the set A is (ho, h, Mo)-uniformly stable with respect to system (2.1.1).

Proof. Let 0 < € < p and typ € Ry be given. By condition (i), there exist
01(€),02(€) > 0 and 71 (€), T1(€) — oo as € — 0 such that

to+1
/ h{(s,¥(s,z%))ds < ¢, (3.1.1)

to

provided z* € S(A4, 6;1), ttOOH ho(s,¥(s,z*))ds < 2 and tg > 71(€).
In view of assumption (ii) and definition of a, we have, for some positive constants

d3(€), b4(€) and 73(c), T2(€) — oo as € — 0, the following inequality

/ T a5 hols, B(s,2"))ds < b(e), to > Ta(e). (3.1.2)

to

when z* € §(A4, §3) and f;"“ ho(s, (s, z*))ds < d4.

Let 61 (¢) = min{d1(¢), 83(€)}, d2(€) = miil{dz(e), 04(€)} and 7(e) = max{r(e),
T2(€)}. If we choose z* such that z* € S(A,d:1) and ftto°+1 ho(s,¥(s,z*))ds < 82,
then we claim that

to+1
/ h(t,z(t,s,9(s,z*)))ds <€, t>to+ 1, to > 7(e), (3.1.3)
to

where z(t, s,9¥(s,z*)) is any solution of (2.1.1).
If this is false, then there exist t; > to + 1, to > 7(e) such that

to+1
/ h(ty, z(ty, s,¥(s,2")))ds =€,
to

and

to+1
/ h(t,z(t, s,9(s,2*)))ds <€, to+ 1<t <ty tg > 7T(e). (3.1.4)

to

It then follows from assumptions (ii) and (iii), relations (3.1.1), 3.1.2), (3.1.4)
and Lemma 2.4, that
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to+1
b(e)zb(/ ’ h(tl,z(tl,s,w(s,x*)))ds)
to+1
< / b(h(t, z(t1, 5, 6 (s, 5°)))ds

to+1
.<_ / V(tlax(tlvsa¢(s7$*)))ds

to

o+1
g/t Vs (s, 57))ds

to

This is a contradiction and the proof is complete.

If we utilize a family of Lyapunov functions instead of one, it is natural to
expect that each member of the family has to satisfy weaker requirements. To il-
lustrate this idea, we shall next give the following result which is an improvement
of Theorem 3.1.

Theorem 3.2. Assume that
(1) ho,h €T and hg is integrally finer than h;
(ii) for every n > 0, there exists a function V, € C[S(h, Mo, p) N S¢(ho, Mo, n),
Ry] such that V,(t,z) is locally Lipschitzian in z and satisfies
b(h(t,z)) < V,(t,z) < alho(t,x)), (t,x) € S(h, Mo, p) N S°(ho, Mo,n),
where a € KC, be KC;
(iii) D*V, <0, (t,x) € S(h, Mo, p) N S¢(ho, Mo, n).
Then the set A is (ho, h, Mo)-uniformly stable with respect to system (2.1.1).

Proof. Let € € (0,p) and to € Ry be given. Assumption (i) implies that there
exist 81 (€),2(€) > 0 and 7(¢), 7(€) — oo as € — 0 such that

/ s, (s, 7)) ds < €, to > T(e), (3.2.1)

to

provided z* € S(4,61) and [°*" ho(s, (s, 2*))ds < &5.

We choose 83 = 83(¢) > 0 such that a(63) < b(e). Let d2(€) = min{da(e), 83(e€)}.
If we choose z* such that z* € S(A,61) and fttoo‘H ho(s, (s, z*))ds < 62, then
we claim that

to+1
/ h(t,z(t,s,¢(s,z%)))ds <€, t>to+1, to > 7(e),
to

where z(t, s, (s, z*)) is any solution of (2.1.1).
If this is false, then there exist a solution z(t, s,v(s,z*)) of (2.1.1) and #1, o
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satisfying ¢ > t1 > to + 1 such that

to+1 .
/ hO(tlaw(tl,S,,l/)(s7x*)))ds =627

to

to+1
/ h(t, 2(t2, 8, %(s,2")))ds =,

to

(3.2.2)

and
(t,:l!(t)) € S(h,Mo,E) N Sc(ho,Mo,Zs;) for t € [tl,tz].

Hence, by letting 7

= § and condition (ii), there exists a Vj(t,z) satisfying
assumptions (ii) and (iii),

which implies

o< | O b(h(tay 2(ta, 5, 9(s, 2°))))ds

to

to+1
< / Vi (tz, z(t2, 5,9 (s, 2")))ds

to

to+1
< / Vi (ts, (1,8, %(s, 2*)))ds

to

to+1
< / a(ho(ty, z(t1, s, ¥(s, z*))))ds

to
< a(/tto+1 ho(tl,x(tl,S,%/)(S»-’B*)))ds)

= a(33) < ble).

This is absurd. Thus the proof is complete.

Let us next discuss a result on (hg, h, Mp)-uniformly asymptotic stability
that corresponds to Marachkov’s result.

Theorem 3.3. Assume that
(i) ho,h € T and hg is integrally finer than h;
(ii) V € C[R4+ x R™ Ry], V(t,x) is locally Lipschitzian in x and satisfies

0 < V(t,z) <a(t,ho(t,z)), (¢t )€ S(h, Mo,p),
where a € CKP,be KC;
(i) DYV (t,z) < —c(h,(t,z)), (t,z) € S(h,Mo,p), c€ KC;
(iv) h € C'[Ry x R™ Ry] and |W'(t,z)] < M, (t,z) € S(h,Mo,p), where
M >0 and h'(t,z) = he(t,z) + he(t, ) - f(t, 7).
Then the set A is (ho,h, Mo)-uniformly asymptotically stable with respect to
system (2.1.1).

Proof. Let us first prove that the set A is (ho, h, Mp)-uniformly stable with
respect to (2.1.1). Let € € (0, p) and to € K4 be given. In view of the definition
of a, there exist positive constants 1 (€), d2(¢) and 71 (€), 71{e) — o0 as € — 0,
such that
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iy € €
/t a(s, ho(s,¥(s,z*)))ds < Wc(i)’ to > m(e), (3.3.1)

provided z* € S(A,6) and [ ho(s,¥(s,z*))ds < 6. _
Assumption (i) implies that there exist d3(€),d4(€) > 0 and (e), To(€) — 00
as € — 0, such that

to+1 =
[ bsvteanas <5, 1020, (332)

to
provided z* € S(A4, é3) and f::“ ho(s, (s, z*))ds < é4.
Let 8,(¢) = min{&i(e),d3(e)}, 82(e) = min{d2(€),d4(e)} and T(e) =
max{7i(€), 72(€)}. If we choose z* such that z* € S(A,6;) and ftto°+1 ho(s,
P(s,z*))ds < §a, then we claim that

to+1
/ h(t,z(t,s,9(s,z7)))ds <€, t > to+1, to 2 7(e), (3.3.3)
L

0

where z(t, s,¥(s,z*)) is any solution of (2.1.1).
If this is false, then there exist t1, t2 satisfying to —t1 > 557 and t2 > 1 >
to + 1 such that

to+1 €
/ h(t,z(t1, s, ¥(s,z")))ds = 3
T

to+1
/ h(ta, 2(t2, 5, %(s,2")))ds = €,
i

/ Ot ot 5, (s, 7 N)ds 2 £ t€ bt (3.3.4)
t

0

[ &2 )

and tot1 ;
/ h(t, z(t,s,9(s,3*)))ds < € t€[to+1,t2).

to

It then follows from (3.3.1)—(3.3.4) that

to+1
0< / V(t2, z(t2, 5,%(s,2")))ds

to

» o+l
</t : V(s,¥(s,z"))ds

to

to+1
+ / [V (t2, z(t2, 5, (s, 3"))) = V(tr, 2(t1, 5, (s, %))} ds

to

< /tOﬂ a(s, ho(s,¥(s,z%)))ds +/t0+1 ( ) D+V(t’$(t,S,¢(3’I*)))dt>ds

to to i1

= ﬁc(%) . /t2 c(/tt0+th(t,z(t,s,1ﬂ(s,$*)))ds)dt <0,

t1 0

which is a contradiction. Hence the set A is (ho, b, Mp)-uniformly stable. Thus
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for € = p, there exist 1(p) > 0, 61(p) > 0 and §2(p) > 0 such that

to+1
/ h(t,.’L‘(t,S,’l/)(S,l‘*)))dS <p t >to+ 1, to > Tl(p)’ (335)

to

provided z* € S(A, ;) and ft°+1 ho(s, ¥ (s,z*))ds < 65, where z(t, s, (s, z*))
is any solution of (2.1.1).

In view of assumption (ii) and the definition of a, we have, for some positive
constants 72(p), d3(p) and d4(p), the following inequality :

to+1
/ a(s, ho(s,%(s,2)))ds < p, to > 72(p), (3.3.6)
to

whenever z* € S(A4, §3) and ft°+1 ho(s, v (s,z*))ds < dy4.

By condition (i), there exist 7‘3(/)) > 0, d5(p) > 0 and dg(p) > 0 such that

to+1
/ h(s,¥(s,z*))ds < p, to > 73(p), (3.3.7)
to
provided z* € S(A,85) and [°*! ho(s, 9(s,2*))ds < G
Let 610 = min{41,d3,d5}, d20 = mln{62,64,66} and 7o = max{m(p), 72(p),
3(p)}. If we choose z* such that z* € S(4,6,0) and ft°+1 ho(s,¥(s,z*))ds <
520, then we claim that

to+1
tlim h{t,z(t,s,9(s,2*)))ds =0, to> 70, (3.3.8)
— 00 to
where xz(t, s,9(s, z*)) is any solution of (2.1.1).
If this is not true, then for some ¢y > 0, there exist a solution z(t, s, 1(s, z )]
with 2* € S(A4, d10) and f ol ho(s,%¥(s,x*))ds < 829 and a divergent sequence
{tx} such that

to+1
/ h(tk, z(tk,s,¥(s,z*)))ds > €0, k=1,2,....

to

It then follows from assumption (iv) that, on the intervals tx — eg/2M < t <
tk +e0/2M, k=1,2,..., we have

to+1 to+1
/ h(t,z(t, s,¥(s,2*)))ds > 60+/ / "(m,z(m, s,%(s, z*)))ds dm

to to

m|o

We can assume that these intervals are disjoint and ¢; — ¢ /2M > tg + 1 by
taking, if necessary, a sequence of ¢;. This, together with assumptions (iit)
and (iv), implies
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/to+1 V(tr + D z(te + f0r P(s,z*)))ds
k oM’ k oM’ ’

to

to+1
S/ i Vito + 1,z(to + 1,s,9%(s,z%)))ds

to+1 tk+—,%;
/ / h(t,z(t,s,¥(s,2%))))dt ds
to+1

?/%+34&w@wwws—A%+%¢(/MthImaw@JW”“%”

to o+1 to
o . € €

< [ ats, hols, wis,a s = el Pk

<p——c(2)k—>—ooask—>oo.

which is a contradiction. Thus the set A is (ho, h, Mp)-uniformly asymptoti-
cally stable.

To obtain a smooth converse theorem for (hg, h, Mg)-uniform asymptotic
stability, we should assume large domain of attraction, that is we need to
have a stronger concept than (ho, h, Mo)-uniform asymptotic stability. The
following result is a direct theorem of this type.

Theorem 3.4. Assume that
(i) ho,h € T and hg is integrally finer than h;
(i) V € C[R4+ x R™ Ry}, V(t,x) is locally Lipschitzian in  and there exist
functions a € CKP and b € KC such that
b(h(t,z)) < V(t,z) < a(t, ho(t,z)), DTV (t,z) <0, (t,z)€ S(h, Mo, p);
(iii) W € C[R4+ x R™ Ry], W(t,x) is locally Lipschitzian in z and
W(t,z) < N, D*W(t,z) < —c(V(t,z)), (t z)€ S(h, Mo,p),
where c € K, N > 0;
(iv) there erists a positive constant vy € (0, p) such that
to+1
D_ h(t,z(t,s,9¥(s,z%)))ds < 0
to
'Lf to+1 )
h{t,z(t,s,¥(s,z*)))ds =7, t > to+1,
4
wheré h(t,x) s locally Lipschitzian in x for each t, z(t, s,y (s,z*)) is any
solution of system (2.1.1) and to is sufficiently large.
Then the set A is (ho, h, Mo)-uniformly stable and (h, h, Mo)-uniformly attractive
with respect to (2.1.1).

Proof. It follows from assumption (i)—(ii) that the set A is (ho, h, Mo)-uniformly
stable with respect to (2.1.1). By condition (i), there exist 7;(y) > 0, §;(y) > 0
and d2(7v) > 0 such that
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to+1
/ h(s,®(s,2*))ds <7, to2>Ti(7), (3.4.1)

to

provided z* € S(4,4,) and ftOH ho(s, (s, z*))ds < 5.
Let z(t,s,v(s,z*)) be any solution of (2.1.1) with z* € S(4,6;) and

ff:“ ho(s,v¥(s,z*))ds < &3, we shall first show that

to+1
[ bswis,ads <

to
implies ft°+1 (t,z(t,s,9(s,z*)))ds < v, t > to+ 1, tg > 11 (7). (3.4.2)

If it is false, then there exist t; > to + 1, to > 71(7) such that

to+1
/ h(t1, z(t1,s,¥(s,z%)))ds = v and

t
° to+1
/ h(t,z(t,s,¥(s,2*)))ds <7, t€[to+1,t1).
to
Then
to+1
D_ h(tl,l‘(tl,s,'lp(s,.’l'*)))ds
t
° to+1
=i inf—[ / Bty + 8,(t1 + 6, 5,3(s,2")))ds
§—0-— é to

to+1
—/ h(ty,z(t1, s,9¥(s,2*)))ds| > 0,

to

which €ontradicts assumption (iv). Thus the set S(h, My, ~) is a positive invari-
ant set of system (2.1.1).

Now let € € (0, p) be given. Set d10 = 61(7y), 020 =7, 70 =11 (y) > 0, T'(€) =
N/c(b(e)) + 1. If we choose z* such that z* € S(A4,610) and

ti°+1 h(s,9¥(s,z*))ds < d29, then we claim that there exists a t* € [t + 1,%p +

1+ T such that
V(t*, z(t*, s, (s, z*))) < ble), (3.4.3)

where z(t, 5,%(s, z*)) is any solution of (2.1.1).

If this is not true, then there exists a solution z(t, s, ¢(s,z*)) of (2.1.1) with
z* € S(A4,610) and ft°+1 h(s, (s, £*))ds < 839 such that

V(t, x(t, s,9(s,2%)) > be), tE€ [to+1,to+1+T].

It then follows from condition (iii) that
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Wkto+1+T,z(to+1+T,s,9(s,z")))
to+14+T

< Wito +1,a(to +1,5,9(s,2")) — / oV (m, 2(m, 5,9(s, 2°))) )dm

to+1
< N —c(b(e))T < 0,

which is a contradiction. Then by (ii), we get

b(/to+1 h(t,x(t,S,w(Sax*)))ds) < /t0+1 b(h(t,x(t,S,’lfJ(S,a;*))))ds

to to

to+1
5/ Ve, o(t, 5, (s, 3")))ds

to

to+1

< / V(t*, 2(*, s, 0(s,2*)))ds
to

< b(e),

which implies

to+1
/ h{t,z(t,s,¥(s,z*)))ds <€, t>to+ 1+ Tle).

to

Thus the set A is (h, h, Mp)-uniformly attractive and the proof is complete.

As we shall see, employing several Lyapunov functions offers a better
mechanism to obtain results under much weaker assumptions.

Theorem 3.5. Assume that
(i) ho,h € T and hg is integrally finer than h;
(ii) V € C[R4 x R™ R,], V(t,x) is locally Lipschitzian in = and satisfies
b(h(t,z)) < V(t,z) < a(t ho(t,z)), (t,x)€ S(h, Mo,p),
wherea € CKP,be KC;
(iii) DYV (t,z) < —=A(t)c(h(t,z)), (t,z) € S(h, My, p), where A(t) is integrally
positive and ¢ € KC;
(iv) Wy, Wa,... ,W,, € C[R+ x R* Ry], for each i = 1,2,...,m, W;(t,z) is
locally Lipschitzian in x, DTW (t,x) is bounded from below on S(h, My, p)
and there erist functions a1 € KC, by € KC such that

bi(h(t,z)) <D Wilt,z) < alt, ho(t,x)), (t,z) € S(h, My, p).
i=1
Then the set A is (ho,h, Mp)-uniformly asymptotically stable with respect to
(2.1.1).

Proof. By Theorem 3.1, the set A is (ho, h, Mp)-uniformly stable with respect to
(2.1.1). Furthermore, similar to Theorem 3.3, we see that (3.3.5)-(3.3.7) hold.
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To prove (3.3.8), note that by (h(t,)) < >_iv, Wi(t,z) for (t,x) € S(h, My, p),
it is enough to show that
to+1 ™M

Jlim > Wilt,z(t,s,9%(s,2%)))ds =0, to > 0. (3.5.1)
T Jto i=1
If (3.5.1) is false, then there exists an 4, 1 <4 < m, such that
to+1
thm Wi(t,z(t, s,¥(s,z*)))ds # 0.
—00
to

Thuswecanﬁndasequenceto<t1<t2...<tk<... with tx —te_1 > a >0

and ¢t — oo as k — 00 such that
to+1
Wi (tk, z(tk, s,¥(s,z2%)))ds > 1 > 0. (3.5.2)

to

Suppose that D+W§,’(—h$) > —M. Since
0

I/V'i(t’ z(t, s, ¢(sa z*)))ds =
toto+1
W’i(tka I(tk, S, TP(S, a:*)))ds+

t
’ to+1
/ DYW;(m, z(m,s,¥(s,z*)))dm ds,
to th
it follows from condition (iv) that there exists a constant §, 0 < § <
min{a,!/2M} such that

to+1

W,-(t,z(t,s,w(s,x*)))ds>l—6M> , telth—0tk.  (3.5.3)

B —~

to
Since >_iv, Wi(t,z) < ai(h, (t,z)), we have from (3.5.3)
to+1 l
/ " h(t,z(t,s,¢(s,z*)))ds > a;1(§), te[tk—6,tk], k=1,2,... (3.5.4)
to

Let I = ;2 [tk — 6, tk), then it follows from condition (iii) that
to+1

Jim [ Vit w5 )ds
t:il
< / V(to + 1,z(to + 1,5,9(s,z)))ds
to-+1
/ / D*V(m,z(m,s,¥(s,z*)))dmds
to+1
< /to-’-1 V(s,9(s,z*))ds

/tOH/ Ye(h(m, z(m, s,9(s, z*))))dm ds
to to+1
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</ T (s, ho(s, (s, 2*)))ds

to

_/too )\(m)(/tOJrl c(h(m,z(m,s,¢(s,m*))))ds)dm

o+1 to

<p- /too /\(m)c( /to+l h(m,z(m,s,@b(s,x*)))ds) dm

o+1 to

<p— c(afl(g)) /1 A(m)dm = —o0,

which is a contradiction. Thus (3.3.8) is true and therefore the set A is (ho, h, Mp)-
uniformly asymptotically stable.

The following result which uses two Lyapunov-like functions is a special case
of Theorem 3.5.

Corollary 3.6. Assume that conditions (i) and (ii) of Theorem 3.5 hold. Suppose
further that

(iii) W € C[R+ x R™ Ry], W(t,z) is locally Lipschitzian in = and there eist
functions ¢ € KC and A(t) which is integrally positive such that
c(h(t,z)) < W(t,z), D*V(t,z) < -AOW(,z), (t,x) € S(h, Mo, p),
and DYW (t,z) is bounded from below on S(h, My, p).

Then the set A is (ho,h, My)-uniformly asymptotically stable with respect to
system (2.1.1).

The following theorem offers a better conclusion.

Theorem 3.7. Assume that
“(i) ho,h €T and hq is integrally finer than h;
(ii) Vi,Vz € C[R; x R™, Ry}, Vi(t,z) and Va(t, ) are locally Lipschitzian in x
and there exist functions a € CKP, b€ KC such that
b(h(t,z)) < Vi(t,z), Vi(t,z) + Va(t,z) < a(t, ho(t,T)), (t,z) € S(h, Mo, p),
D*V(t,x) < =At)c(Wi(t,2), (¢ =) € S(h, Mo, p),

where V = Vi + Vo, A(t) 1s integrally positive and ¢ € KC;
(iii) for every solution x(t,s,¥(s,z*)) of (2.1.1), the function

/0 t / DV (m, (my 5, (s, ds dm

is uniformly continuous on Ry, where the symbol [-|+ means that either
the positive part [+ or the negative part [-]— is considered for all m € R,
and tg is sufficiently large.
Then the set A is (ho,h, Mo)-uniformly asymptotically stable with respect to
system (2.1.1) and j;tOOH Va(t, z(t, s,9(s,z*)))ds has a finite limit as t — oo for
any solution x(t) = x(t,s,¥(s,z*)) of (2.1.1) such that (t,z(t)) € S(h, Mo, p).
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Proof. Because of assumptions (i)(ii), the relations (3.3.5)—(3.3.7) hold. Define
the functions

to+1
my(t) =/t Va(t, z(t, s,9(s,z*)))ds,

to+1
ma(t) = /t Va(t, a(t, 5, 9(s,2*)))ds,

to+1 to+1
m(t) = / " Vit oty 5, 0s,5))ds + / Valt, 2ty 5,4(s, ")) ds.

to to
Since b(h(t,z)) < Vi(t,z), (t,z) € S(h, My, p), the result lim; .o, my(t) = 0
suffices to prove (3.3.8). Clearly tlim inf my (t) = 0. For otherwise, we could have,
00
in view of (ii), m(t) — —oo as t — o0o. Suppose now that tlim supmi(t) # 0,
—00

then there exists a v > 0 such that

lim supmq(t) > 3.

t—o0
For definiteness, suppose that assumption (iii) holds with []+. Since m,(t) is
continuous, we can choose a sequence

to+l<ap<Bi<...<oy<pfi<...,
such that for i = 1,2, ...,
mi(eg) =3y, mi(Bi) =7

and
y<mi(t) <3y, tE€[a;pM (3.6.1)

Assumption (iii) yields that m(t) is nonincreasing and bounded from below, and
therefore lim; ,o, m(t) = ¢ < 0o. Thus there exists a T > 0 such that

o<mt)<o+vy, t>te+1+T. (3.6.2)
From (3.6.1) and (3.6.2), it is easy to see that
mo(oy) <o —2y, ma(B;) >0 —1. (3.6.3)

It follows from (3.6.3) that

to+1  pBi
0<y<mal@) = male < [ [ T ID*Vatm sl sl dmas
B:i  pto+l
= DHVa(m, z(m, 5, 9(s,2*))] . ds dm,
/a,- /to [DFVa(m, z(m, s, ¢ (s, z M), dsdm

which implies, in view of assumption (iii), that there exists a constant d > 0
such that

Bi—a;>d, 1=1,2,... (364)
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By (3.6.2)-(3.6.3) and condition (ii), we then get

to+1 00

lim m(t) <m(to+ 1)+ / DYV (t,z(t,s, ¢(s,z*)))dt ds
UL to to+1

< m(s) — /too A(t)e(ma(t))dt

o+1

<p—c(7) /1 A(t) = —o0,

where I = (J;2,[as,0:])- This contradiction implies that tlim supmi(t) = 0.
—00

Thus we conclude that the set A is (ho, h, Mp)-uniformly asymptotically stable.
To prove the last assertion of the theorem, note that lim; .. m(t) = o and
limy_,o m1(t) = 0, consequently the definition of m(t) yields lim¢—qo ma(t) = o.
The proof is complete.

As we have seen, the use of comparison principle provides a unified approach
and generalizes several stability results into one framework. However, a direct.
analysis of the right-hand side of the comparison equation can sometimes yield
sharper results. This can be seen in the following theorem.

Theorem 3.8. Assume that
(i) ho,h €T and ho is integrally finer that h;
(ii) V € C[R4+ x R™ Ry], V(t,z) is locally Lipschitzian in z and satisfies
b(h(t,x)) < V(¢ 2) < alho(t,2)), DTV (¢t ) <g(t,V(t 2)),
(t,l’) € R.+. X R",
where a € KC, be KC, g € C[R+ x R, R], g(t,0) =0,
(iil) for every pair of numbers o, B, such that 0 < a < B, there ezists constant
0 = 6(a, B) > 0 satisfying
gt,u) <0, a<u<p, t>0,

(iv) ho € C'[R4 x R™, Ry} and for some function A € C[Ry, Ry},

%ho(t,x) + a—ax-ho(t,z). £(t,z) < Mho(t,z), (t,z) € Ry X R™.

Then the set A is (ho, h, Mo)-uniformly stable with respect to (2.1.1).

Proof. Let € > 0 and tp € R4 be given. By condition (i), there exist 4 (e),
82(€) > 0 and 7(e), 7(¢) — oo as € — 0 such that

to+1
/ h(s, B(s,5"))ds <& to > T(e), (3.7.1)
to

provided z* € S(A,4;) and f::’“ ho(s,¥(s,z*)) < b2.

We choose 63 = d3(€) > 0 such that a(d3) < b(e). Let 8 = 6(a(d3),b(e)) > 0,
82 = min{dy(e), 53(e)}e VY, where °



146 Huizue Lao and Xilin Fu

. sup A(t), if6>tg+1;
N = N(g) = J to+1si<e
©) { sup  A(t), if8<tg+1.
9<t<to+1

If we choose z* such that z* € S(A4,d;) and ft°+1 ho(s, (s, z*))ds < &3, then
we claim that

to+1
/ h(t,z(t,s,%(s,2%)))ds <€, t>to+1, to> 7(e), (3.7.2)

to
where z(t,s,v(s,z*)) is any solution of (2.1.1).
Next we have two cases to discuss.
(1) If @ < to + 1, we shall show
V(t, z(t, s,9(s,2%))) < ble), t>to+1. (3.7.3)
If this were false, there would exist t;, ¢2 satisfying t2 > ¢; > ¢ty + 1 such that
V(tl ) -T(tl y Sy 1/1(3, x*))) = 0(32),
V(t2a :c(t21 8, ¢(3v 1:*))) = b(E),
a(82) < V(t,z(t,s,9(s,2%))) < ble), ¢ € [t1,ta]. (3.7.4)
Hence at t = t;, we would have
DYV (t1,z(t1,s,%(s,z*))) > 0. (3.7.5)

On the other hand, as t; > # and (3.7.4) holds, we would obtain, from condition
(iii), the inequality

D+V(t1,z(t113,¢(3’x*))) < g(t, V(tl,s,z/z(s,z*))) <0,
which would contradict (3.7.5). This proves that

/ ot 5t 5,908, 2))ds < Ble), 3 to+ 1. (3.7.6)

to

(2) If 6 > to + 1, we shall first show
V(t,z(t,s,%(s,2%))) < a(f3), to+1<t<4. (3.7.7)
Defining m(t) = ho(t, z(t, s, (s, *))), we obtain, by condition (iv),
m'(£) < Atym(t),
which implies, by the Gronwall’s inequality,

to+1
/ hO(tiir(t’S"‘p(s’m*)))ds

to

< / b ho(s,i,[)(s,i\*))exp[ / ; ,\(m)dm] ds. (3.7.8)

to
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By the definition of d2 and (3.7.8), we see that

to+1
/ ho(t,z(t,s,¢(s,z%)))ds < d3, to+1<t<4,

to

which implies
to+1
/ Vi, (t, s, (s, 5")))ds < ads) < ble), to+1<t<0.
to

If t > 6, the proof of (3.7.6) is similar to (1). Consequently, we get, from
assumption (i) and (3.7.7), that

to+1
/ h(t,z(t,s,%(s,z*)))ds <e, t>ty+ 1.
to

Thus the proof is complete.

Ezample. Consider the nonliear differential system

T) = =1 + 2T3 + T 25"

;"2 = 21 —T9 — ;'CQJ.':‘E\‘:‘_t.

2l = 254 — izset, (3.7.9)
.rfl = —223 + I:.';l"l“_f

frr 1’||

Let V(t,z) = (1/2)(s? +z§ + a3 +23), h(t,z) = 2} + 23, ho(t, z) = o} + 23 +
z3 + z2. Then we see that

Let Wy = (1/2)z? and W, = (1/2)2, then
DYW(t,z) = —22 + 21172 + 23227t > —3p2,

<
12\l < e

D Wo(t,x) = —2z122 — 22 — 23227t > —3p% — p4,

<
19520 il < p
and 1
5(1:? + x%) < h(t, z).
Thus all conditions of Theorem 3.5 are satisfied and therefore we conclude
that the set x = 0 is (ho, h, Mp)-uniformly asymptotically stable with respect
to (3.7.9).

%h(t,x) < Wy + Wy =
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