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Short Commun'icat'ion

min{/(r ,  a) t  (r ,a) e D},

where gr solves the parametric variational inequality

f ind y eC(x) :  (u -a)rF@,g) > 0, for al l  u e C(r)

(P)

(vl(r))

Material on the MPEC problem and its applications can be found in [5]. In what

follows we assume that (P) is linear, i.e., D, C(r) arc polyhedral convex sets for

every 0, and /, F are affine functions'
The MPEC problem, even in Iinear case, is known to be a difficult multi

extremal problem because of its nested structure. Few numerical methods have

been proposed for solving the MPEC problem (P) (see e.C. 12- 8]). All of the

existing methods can compute only a local solution or a stationary point. To

our knowledge, up to date no method has been developed for solving Problem

(P) globally.
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1. Introduction

Suppose that / : IRn+rn -r IR.. F ' R'+m --+ IR- are given functions, D c IRn+m

is a nonempty closed set, and C : IR' --+ lR- is a set-valued map with closed

convex values, i.e, for each c € IR', C(r) is a (possibly empty) closed convex

subset of IR-. Consider the following mathematical program with equilibrium

constraints, shortly MPEC
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In this short communication we present two methods for globally solving
Problem (P). We reformulate the problem as an ordinary Iinear program with
an additional cornplementarity constraint. For globally solving the latter prob-
Iem we propose two branch-and-bound algorithms. The first algorithm uses a
simplicial subdivision accompanied with a decoupling technique for bounding.
The second one uses a binary tree defined according to the sign (zero or positive)
of the dual variables appearing in the complementarity condition. The branch-
ing in the both algorithms takes place in the space of the dual variables whose
dimension is just equal to the number of the constraints of the inner variational
inequality. Preliminary computational experiences and results show that the
algorithm using binary tree is more efficient than the simplicial subdivision al-
gorithm. A lot of randomly generated problems up to twenty five - dual variables
are solved by the binary tree algorithm on a PC Pentium II computer.

2. Preliminaries

Throughout the paper we suppose that

C(" )  :  {A  e  R 'n  :  g (x ,A) ' . :  An  I  By  *  b  >  0 } ,

F ( r , A ) : P r * Q A + q  ( 3 )

where b € Rt, e € ftm and A, B, P, Q are appropriate given matrices, By
applying the Kuhn-T\rcker theorem for the Iinear variational inequality (VI(r))
we can see that LMPEC problem is equivalent to the problem

/* : :  min I@,a) (CP)

subject to
( r ,g )  e  D,  (4 )

P r + Q a * q - B T ) , : 0 ,  ( 5 )

A r * B y + b > 0 ,  ( 6 )

) > 0 ,  S r ( A r * B a * b ) : O  ( 7 )

in the sense that if the pair (r, y) is a global minimizer of (P) then for any .\
satisfying (5) and (7) the triple (), r,y) is a global minimizer of (CP);conversely,
if the triple (\,r,y) is a global minimizer of (CP), then the pair (r,g) is a
global minimizer of (P). As usual we shall call A dual variables and (r, y) primal
variables.

We note that when ,\ : 0, Problem (CP) becomes a linear program. Thus
we focus on the difficult case when ̂  + 0. In this case Problem (CP) takes the
form

(2)

f1 : :  m in f  ( r ,y ) (cP1)
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subject to"  ( r , a ) € D ,  P r + Q a + q - B r ) ' : 0 ,

) ) 0 ,  ^ + 0 ,  A r * B y + b > 0 ,  s , r ( l r r B y - l b )  : 0 .

3. Relaxation Bounding and Simplicial Subdivision

Let,9r be the l- l-simplex whose vertices are the unit vectors €r,...,et of. Rt.
Let ,S be a fully dimensional subsimplex of ^91, and Cs be the polyhedral cone
vertexeid at the origin whose extreme edges are halflines passing the vertices of
^9. Consider Problem (CP1) restricted to this cone. That is

,f (^9) :: min /(r, g) (CPS)

subject to 
@,i l  e D, Ar * By -t b > o,

P r + Q a + q - B r ) , : 0 ,

\ r ( A t + B Y - l b )  : 0 ,  ) € C s ,  ) 1 0

Clearly if ,S: ,Sr Problems (CPS) and (CPl) coincide.
Corresponding to (CPS) we consider the relaxed problem

06):: min/(r,y) (RCPS)

subject to 
@,a) e D, Ar r By * b > o,

P r * Q a * q - B r z : 0 ,  z € C s ,

xr(,1,x -l Ba + b) :0, ,\ € ̂ 9,

This bounding has the following properties.

Proposition 1. (i) If (),,r,y) is feasi'bte for Problem (CPS), then Q] D!:t \n,r,
y,\) is feasi,ble /or (RCPS) and B$) S /(S)'

(ii) .I/ (As,"s, as , zs) i,s opti,mal /or (RCPS) and, the cond'ition

1zs1r lArs + Bas + b) : o, zs f o, (*)

' is sat'isfied, then (zs ,rs ,as) is optimal /or (CPS) and' p(S): /(S).
(ii i) # Problem (RCPS) is soluable, then there'is an optimal solut'ion (A,x,y,z)

such that,\ € y(S) (the set of the uertices ol S).

Suppose that ^9 is the simplex to be subdivided. Let (u1,...,ut) be the
vertices of ,9. Note that if the condition ('t) in Proposition 1 is fulfilled, then
(rs,rs,ys) is optimal for (CPS) and therefore P(S): /(S). In this case the
simplex ,S can also be deleted. So we may assume that this condition does
not hold. Let r(zs) be the point where the halfline connecting the origin and

r91
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zs meets S. Since the condition (x) does not hold, As 7 r(zs). Let a.,s ::
(n("t) + ^s)12. Since ars € ,9, we have

, '  : f4  o ,  
f t r :  t ,  t i  >  o  ( i  :  r , . . . , ( ) .

i : L  i : L

Let l(c.rs) ;: {ri : tr > 0}. We then subdivide ^9 into subsimplices ̂ 9;, where S;
(z e /(a.'s)) is obtained from ,9 by replacing the vertex ui of S with c.rs. The
points z (zs ) and ,\s are called subdivision points for S (see e.g. [3] ) . Note that
if r(zs) and )s are two adjacent vertices of S and the edge connecting zr(zs)
and )s is longest, then this is an exhaustive bisection process.

Having the above mentioned bounding and branching operations we can
apply the prototype branch-and-bound scheme in [3] to solving Problem (CP1).

4. Branching and Bounding by Binary Tlee

Let us define a binary tree as follows:
The tree is defined according to the sign of the dual variables trr,...,)2.

To each node of the tree we associate a dual variable by fixing it to be zero
or positive. Every node has exactly two branches. The node corresponding to
the variable li has two branches: one corresponds to )ia1 : 0, the other to
,\i+r ) 0. The root has two branches corresponding to )r : 0 and )1 ) 0.
Note that a variable )i ma}/ correspond to one or more nodes, but a node
corresponds to exactly one variable. We agree to call a node partiti,on set. The
initial partition set ?r is the root of the tree. Since the number of variables ,\i
is finite, the binary tree is finite too, i.e., it has only a finite number of nodes.

Let P(T) denote the path from the root ft to the node ?, and let J(T) C

{ 1 , ... , /} denote the set of indices that correspond to the nodes belonging to the
path P(?). Let

Js(T) ::  { j  e Jg): ) i  :  0}, h(T) ::  { i  € JQ): , \1 > 0}.

Since at the root the sign of every variable ,\r' is free, Jo(T) : Jr(Tr) : A.
Let (CPT) denote the problem (CP) restricted to the partition set ?, i.e.,

subject to

a(T) : :  minf (r ,y) (CPT)

@ , a )  e  D ,  P n  +  Q a  +  q -  B T ^ :  0 ,  A n  *  B y  I b )  0 ,

) ' r 1 A r *  B a * b ) : 0 , )  >  0 ,  t r i : 0  i  e  J o ( T ) , . \ i  )  0 ,  j  e  h Q ) .

Since Js(?1) : h(T): 0, Problem (CPTI) is just (CP).
To obtain a lower bound for o(?) we consider the relaxed problem

0 ( T ) : :  m i n / ( o , y ) (RCPr)
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subject to

@,a) e D,  Pr  + Qy + q-  Br^ :0,  (Ax - t  Bg Ib) ,  >  0,  i  /  h(T)
)  > 0,  ) i  :  0 ,  i  e  Jo(T) ,  (Ar+ Ba+b)r :0 '  V i  €  Jr ( " ) .

Since the feasible domain of (CPT) is contained in that of (RCPT), we have

P(T) S o(?). In particular g!t) 3 a(71) : 7..
To obtain an upper bound for the optimal value of Problem (CP) we solve

the following problem

min f (r,y) (UCPT)

subject to

( r , y ) e  D ,  P r + Q a + q - B r ^ : 0 ,  ( A r - f B y - t  b ) i  >  0 ,  j  € J o ( T )

(A r  +  By  +b )1 :  0 , ) j  >  0 ,  i  /  Jo (T ) ,  A i  :  0 ,  j  e  Jo (T ) .

Clearly, any solution of this problem is feasible for Problem (CP). A node (par-
tition set) ? is deleted (dead) if P(T) ) o where a is an upper bound for
the optimal value of (CP). If a node corresponding to some variable, say .\i, is
not deleted, it is branched (bisected) into two nodes by setting )j+r : 0 and
li*t > 6'

With this binary tree the algorithm can be described as follows.

ALGORITHM

Let the tolerance e ) 0 be chosen in advance.

Compute the lower bound /Qt) bV solving linear program (RCPT1). Let
( ) r , r r ,g l )  be the obta ined solut ion.  I f

( ^ r , A n L + B y r t b )  : 6 ,

then let  qt :  gr :  0(Sr)  and ( {1 ,  uL,ur) , :  ( t r t ,  r t ,Ar) .

Otherwise, let o1 : f (*',yt) where ()1 ,i,Ur) is a feasible point of (CPl)
known in advance.

Take 
(  {Tt l  i f  a1 -  B1 > e 1o1l  + 1)

t t : td  ^ '  
o therw ise .

L e t k : : 1

I t e r a t i o n  k ( k : 1 , 2 . . . )

a) If fs :0, then terminate: (€k,rk,t.rft) is an e-global optimal solution to
(CP).

b) If fk # A, then choose T6 such that

Bp :: B(7:1"): min{0(") : ? e f;.}.

Branch ?r into two nodes fi61 and Tnz by setting tr.i+r : 0 for the node fi.1 and
ll+r ) 0for 71"2, where )i is the variable corresponding to the node fir.

Compute /Q*t) by solving linear programs (RCPTki) (i: L,2).
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compute upper bounds a(fi,1) and a(T1"2) by solving linear programs

(ucPTkl) and (ucPTk2). Use o(fi.1) and a(Tp2) to update the incumbent

i6t+r, ,[ir, rt+i; and the currently best upper bound oik+r : f (uk+t ,ok+t).

Set
fi+r :: (fr \ ft) U {Ts,Tp2},

f / ,+r  : :  { "  e  f [ * t  i  ak+r  -  \n+r  )  e( lar+r l  + 1) ] .

Increase k by 1 and go to iteration k.

Since the binary tree has a finite number of nodes, this algorithm always ter-

minates after a finite iterations yielding an e- global optimal solution to Problem

(CP) .
In order to obtain a preliminary evaluation of the performance of the pro-

posed algorithms, we have written computer codes that implement the algo'

rithms. We use the code to solve hundred randomly generated problems. The

computational results show that the binary tree algorithm is more efficient. In

factf it can solve problems up to twenty- dual variables' The number of the

primal variables may be larger.
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