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1. Introduction

We consider in this note the Cauchy problem for scalar conservation laws and
look for explicit weak solutions. Namely, let us deal with an unknown function
u(z,t) by an analytical way. The equation governing u is a single conservation
law, completed by an initial datum

w4 (f(t,u): =0, z€R, t>0

u(z,0) =up(z), z=€R. (1.1)

Exactly, the first equation in (1.1) has the form of a first-order quasi-linear
partial differential equation. As it is well-known that smooth solutions are not
available even if the flux f and the initial datum wg are very “qualified” functions,
people therefore turn to study various kinds of generalized solutions. So we recall
here the definition of weak solutions, which are sometimes known to be integral
solutions.

> 0 will be called a weak
u(,.)) € Li, (R x [0,+00)),
) zt holds

Definition 1.1. A function v = u(z,t),r € R,
solution of the Cauchy problem (1.1) if u(.,.), f(
and if, for any test function ¢ € C§° (R x [0, +00)

[ (ute 25 + peute,0) 222 doat
Rx{0,+00) T

+ /Ruo(:c)qﬁ(:v,O)dz =0. (1.2)
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Our goal here is to look for explicit weak solutions of Problem (1.1), relying
on solutions of corresponding Cauchy problem for Hamilton—Jacobi equations:
the cost function of a problem of calculus of variations can explicitly provide
Lipschitz solutions to Hamilton-Jacobi equations. Recall also that a Lipschitz
solution means a locally Lipschitz function satisfying a partial differential equa-
tion almest everywhere in the domain under consideration. More precisely,

Definition 1.2. A function v = u(z,t), € R,t > 0, is called a Lipschitz
solution of the Cauchy problem with the Cauchy datum ug = ug(z), = € R, for
a partial differential equation of first-order

F(z,t,u,u;) =0, wuweO, (1.3)

where O is open in R and the function F is assumed to be continuous on R X
[0,+00) x O xR, if u € C(R x [0,+00)) N WP (R x (0,4+00)), u satisfies the
equation (1.3) almost everywhere and

u(z,0) = ug(z), VzeR.

Concretely, it is well-known that, if f is Lipschitz continuous and g is convex
in R, then the Hopf-Lax formula (see [4])

v(z,t) = (¢" +tf)*(z), TER, t>0, (14)
where the notation * stands for the usual Fenchel transform

h*(z) =sup{z.y - h(y)}, =z €R,
y€ER
provides a Lipschitz solution of the following Cauchy problem for Hamilton-
Jacobi equation
v+ f(ve) =0, z€R, t>0,

v(z,0) =g(z), z€ER. (1.5)

The Hopf-Lax formula and its generalizations have been interested by many
mathematicians: Lax, Oleinhik, Hopf, Bardi, Evans, Ishii, Lions, Barron, J ensen,
Liu, Van,... and their colleagues and students. If we take formally the derivative

in z in (1.5), we get
Vgt + (f(vz))2 =0, z€R, t>0, (16)
vz(z,0) = ¢'(z), z€R. :

Therefore, if v is a classical solution of (1.5), and g is differentiable with ¢’ = ug,
then we see by (1.4) that the function

u(z,t) == v (z,t) = 6%(9* +tf)(z), zeR, t>0, (1.7)

is a solution of Problem (1.1). This motivates us to construct explicit solutions
of Problem (1.1) via the Hopf-Lax formula (1.4). We call them Lax—Oleinhik-
type formulas. Notice that the function v in (1.4) is no longer expected to be
smooth. Here, the function « in (1.7) will then be proved to be a weak solution
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of Problem (1.1) under relaxed conditions so that it is applicable to quite wide
classes of fluxes f and initial data uo. In particular, the set of f would cover
functions having the Caratheodory property, and the set of up would contain
a certain class of functions with bounded variations or functions belonging to
some certain dual spaces of Sobolev spaces. These explicit solutions would then
be able to be candidates for entropy solutions, though the question whether they
are really admissible under entropy criteria is out of the scope of this paper.

Founding the Lax-Oleinhik-type formulas for solutions of conservation laws
has been interested by several authors. To see this and its motivation, the reader
is referred to [2-7] and the references therein.

2. Representation of Weak Solutions

Let us make out the hypotheses to be assumed throughout this paper.
Set .
g9(z) = / uo(y)dy, = €R.
0
(A.1) The flux f = f(t,z) is continuous in {(t,z) : t € (0,+00) \ G,z € R} for
some closed set G C R whose Lebesgue measure is 0. Moreover, to each
N € (0,+00) there corresponds a function gy = gn(t) in L5 (R) such

that

sup |f(t,z)| < gn(t) for almost all ¢ € (0,+00).
le]<N

(A.2) For every bounded subset V € R x [0, +00), there exists a positive number
N(V) so that, for (t,z) € V, |y| > N(V)

.y — g*( fo T,y)dT <| |m}a\mlx {z.z - *(z)——fotf(T,Z)dT}.

(B.1) The function ug € L},.(R) is nondecreasing on R.

Theorem 2.1. Under the hypotheses (A.1), (A.2), and (B.1), the function

Oz

determines a weak solution of Problem (1.1).

B _"’_(g*(.) + /Otf(f, .)df)*(z), ZER, t>0,

Functions with bounded variations are often used in many applications. Next
we will present the explicit formula of weak solutions to the problem (1.1) where
the initial data are functions with bounded variations. It is well-known that a
function with bounded variations can be expressed as a difference of two non-
decreasing functions. Let the initial datum uo have the form ug = u; — ua.
Precisely, we need the following assumptions:

(A.3) For any bounded set V C R x [0,+00) and E C R there exists a number
N(V,E)} > 0 so that

(23 [} [2 f t I 9
walz,t,p) < ||<N(VE)SO (z,t,q) for (z,t) €V, a€ E, |p| > N(V,E),
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where

Pa(,t,0) 2 (p,2) — (5 m1)dy) (0 +0) = Ji £
(A.4) The set
Lo(z,t) = {p€R : palz,t,p) = maxpa (2, t, 9}

consists of only one point for (z,t) € R x (0, +oo) \ Q@ where Q is a certain
closed set whose 2-dimensional Lebesgue measure is 0 and is independent
of a € R, for every a.

(B.2) The initial function ug is given by a difference of two nondecreasing func-
tions:
Ug = U1 — U2,
where u; € L}, (R x [0,+00)),% = 1,2, is nondecreasing and uz(£00) are
finite.

Theorem 2.2. Under the assumptions (A.1), (A.3), (A.4), and (B.2), the func-
tion
=2 @) t R x [0
u(t,a) = 5 min { ([ @) (@) + maxea(tian)} on Rx [0,400)

determines a weak solution of the Cauchy problem (1.1), where the derivative in
x may be understood in the sense of distributions and

0= dom(/om ua(y)dy)”.

In the following we will generalize Theorem 2.1 to the case where the initial
datum is a (weak) derivative of a minimum of a family of functions in R. More
precisely, we assume:

(B.3) Let pq,a € I, be a family of continuous functions in R such that:
— For any ¢, there exists a Lipschitz solution v, = v, (z,t) of the Cauchy
problem for the same Hamilton-Jacobi equation

du/ot + f(t,0v/0z) =0 z€R, t>0
v(z,0) = po(z) z €R.
— For any bounded subset V' € R x [0, 4+00), there are a set W(V) C V
whose Lebesgue measure is 0, a nonnegative number M(V'), and a subset
J(V) of I such that all the functions va = vo(z,t) for @ € J(V) are

Lipschitz continuous in V' with a common Lipschitz constant M (V') and
satisfy the equation (2.1) at every point of V \ W (V') and that

(2.1)

i f (o7 3 o i o 3y
fOI‘ (I,t) e [’ .

So we have the following proposition.

Proposition 2.3. Under the hypothesis (B.3), let the initial datum ug take the
form
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up(z) = %‘;Iéflwa(f), z€R.

Then the function
O
u(z,t) := %éréflva(t,m), z€R, t>0,
is a weak solution of the Cauchy problem (1.1).

Now we assume the hypotheses (A.1), (A.2) with ¢, in place of the function
g, and that ¢, is a convex function in R. Then, thanks to the results of [11,12],
the Cauchy problem for Hamilton—Jacobi equations (2.1) admits a Lipschitz
solution

t
Ve, )= mgﬁ({p.m — 5 (p) —/ f(r,p)dr}, z€R,t>0. (2.2)
2 0
Thus, Proposition 2.3 yields

Theorem 2.4. Assume that the functions @, is finite and convez in R and that
(A.1) and (A.2) are satisfied where g is replaced by @o. In addition, suppose all
the hypotheses used in Proposition 2.3. are fulfilled Then the Cauchy problem
(1.1) admits the following function as a weak solution

u(z, t) := %iréflva(t,:c), z€R, t>0,

where vy s as in (2.2).

Remark. It is worth considering the initial data given by the infimum of a
family of nondecreasing functions. However, in Proposition 2.3 (and therefore
in Theorem 2.4), we cannot transfer the sign of derivative through the infimum.
In fact, if we may exchange the order of these two operations, we would get
completely different results. For example, it holds

a . 1 ifx <0,
o = { 0 ifz>0,

while

inf{z',0'} = 0.
So we let the problem of finding Lax-Oleinhik-type formulas for the Cauchy
problem (1.1) with the intimal data being the infimum of a family of nonde-
creasing functions be open.
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