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Abstract. We construct the exact complex-valued solutions of the nonlinear Schrédin-
ger equation (NLS) in the class of nonscattering potentials, where the inverse problem
associated with the NLS equation can be solved exactly. It is shown that in this class
if the solution of the inverse problem satisfies the NLS equation and if the singular
numbers of this problem satisfy some conditions, then the degrée of normalization
polynomials generated by the discrete spectrum must be zero and the polynomials are
reduced to the corresponding normalization factors, which depend on time only. If the
degree of normalization polynomials is zero, then the general N-soliton solution ¢ of
the NLS equation is given by the transform: ¢ = F//G, where F and G are represented
in the explicit forms in terms of the given scattering data.

1. Introduction

The problem associated with the nonlinear Schrédinger equation (NLS for short)
on a half-line is the system of linear equations (5, 6]:
—iJ®, +C®=1d, &= (<I>1(z,t,/\),(1>2(:c,t,)\)), (z,t) € (0,00) x (—00,00),
(1.1)
with the boundary condition:

* This work was supported in part by the National Basic Program in Natural Sciences,
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®1(0,t,A) = D5(0,¢, M), (1.2)
il -1 0 . 0 C1 .
where J= ( 0 1) , = (02 0 ) , A is a parameter.

The potentials ¢;(z,t), ca(z,t) are complex valued measurable functions satis-
fying the estimate:
lek(z,t)| < Ce**, Cisa constant, € >0, k=1, 2. (1.3)

We begin by recalling the necessary results on the inverse scattering problem
(1.1),(1.2) from the works [5,6]. It is shown that the fundamental system of
solutions of the system (1.1) is

em@mM=GmwumJWanw

= ( ez '”"/Hu z,7 + & t)e N dE, e"“\”/Hgl(z z+&; t)e"’\edf)
(1.4)
€D (a,t,0) = (e (5,4, 1), e (2.1, A))

[o¢] oo
- (e"’\"'/ng(z,m+£;t)e“‘fd§, eir* -l—'ei’\’/Hﬁ‘(x,m-&-&;t)e“%ﬁ), (1.5)
0 0

where A is a real number and H;;(z,z + &;t), ¢,j = 1,2 are elements of the
matrix kernel H(z,z + £;t) of the transformation operator usually used in scat-
tering problems. In addition, H;;(z, s, t) satisfies the estimate analogous to the
estimate (1.3):

|Hij(z,5;) < Cexp{ ~ 2w+ )}, 0<z<s =12  (L6)
We call
e{(0,¢, ) — e(0, ¢, )
S(t,/\) = 2) (2)
es(0,t, ) —e;(0,t,2)

the scattering function for system (1.1). Due to the estimate (1.6) (1)(0, t,A)—

1)(0 t, A) is holomorphic for ImA < ¢/2 and e )(0, t,A)— §2)(O, t, A) is holomor-
phic for ImA > —£/2, therefore they have a ﬁmte number of zeros : A7, ImA; <
0, 5=1,...,v )\,f, Im/\;: > 0, k =1,...,0. We denote the multiplicities
of these zeros by n; and my, respectively. These zeros are called the singular
numbers of the problem (1.1),(1.2). We put

o) = o / (20,6, — eP(0,£,1) " x

Amk—l
(mk = 1)!
, (1.7)

[Ao + AA = A0 +. (A= AFym™—1 | gidegy,
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- 1 "
g (@1)=5- / (200,60 - 70,6, 2)) %

= Bn]-—l
[Bo+Bl()\—/\j)+...+(—nj—_—1—)!

J=10057 (1.8)

()\ = A]— )n]‘—l] e—i/\.’tdA’

where c;: and ¢} stand for sufficiently small circles centered, respectively, at )\2'
and )\j_; Ag,...,Am,—1 and By, ... ,Bn;_1 are the numbers that depend on the
zeros A} and Aj s respectively [5].

We note that fif(—z,t) = pr(z,t)e™? and g (z,t) = g;(z,t)e™ %, where
pi(2,t) and gj(z,t) are the normalization polynomials of = of degrees mi — 1
and n; — 1 respectively. We introduce in the sense of generalized functions the
inverse Fourier transforms of the functions S(t,A) — 1 and § 1, - 1:

+-co+in
folet) =g [ 1SN =1

—00+1in

+c0—1i7n
gs(@.1) = o / [S71(t, A) — e™%d. (1.9)

—00—1in
Here 7 is some number such that 0 < 7 < &g, €0 = min {e/2,ImA{, ..., ImAZ,
[ImA7 |,-.. ,[ImAS|}. Since S(t,A) —1 and S~'(t,\) — 1 are analytic in the

strip 0 < |[Im )| < o, the values of the integrals (1.9) are independent of 7.
The functions fg(x,t), gs(z,t) and fif(~=,t), g; (z,t) characterize the problem
(1.1),(1.2) on the continuous and on the point spectrum, respectively.

The problem (1.1), (1.2) is associated with the nonlinear matrix equation 5, 6]:

Qi = —iQqzzJ + 2iqrQJ, (z,t) € (0,00) x (—00,00),

where Q= (E g) _ (_?CQ '.’.([:)1) .

Note that, when r = Fq, the nonlinear matrix equation is reduced to the non-
linear Schrodinger (NLS) equation on the half-line:

igy = gz + 2lal%q, (1.10)
iqt = qzx — 2|ql2q7 (Iat) € (0,00) X (—O0,00). (111)

It is known that if the matrix potential C' in (1.1) is selfconjugate, then the
problem (1.1),(1.2) has no discrete spectrum [7], and the NLS equation (1.11)
can be solved by the inverse scattering method with a given initial condition:

q(z,t) k5 = Q(m,O)’ [6]

In the case: 7 = —§, it follows from the integral equations fdr the kernels of the
transformation operator that [5]:
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Hyi(z,s;t) = Hog(z,s5t), Hiz(z,7;t) = —Ho(z,73t), 0<z <5 (1.12)

There exists a remarkable class of potentials, for which the inverse scattering
problem can be solved exactly. These potentials are the nonscattering potentials,
for which fZ(z,t) and g5 (z,t) defined by (1.9) are equal to zero, [6]. We assume
that the scattering data for the NLS equation (1.10) belong to the class of
nonscattering potentials and so we consider the set of the scattering data:

s(t) = {)\I, ImA} > €0, pi(T,8); Ap = A,

Im); < —eo, Prlz,t), k=1,...,N, g0 > 0¢. 1.13
k

In the class of nonscattering potentials the kernels will be sought in the form:

N
Hyu(z,z;t) = ZHll,k(x;t)e”‘:””,

o (1.14)°
Hyo(z,z;t) = Z Hig k(z; t)e—i’\;”.

k=1

Due to (1.12), the functions Hyy k(z;t) and Hig k(x;t) satisfy the following sys-
tem [6]:

[o o]

N
Hll,k(l‘; t) = Z le,]'(:[,‘; t) /pk(.’L‘ + T, t)e'()‘:_)‘i )TdT =0,
i=1 ,
I (31 (1.15)
Hig k(z;t)+ Z Hyj(z;t) /;Ek(:v + T, t)ei()‘j_’\’:)"dT = i (2z, t)e”"’\l:’,
i=1

x

where A = Ee s(t), k=1,...,N, (z,t) € (0,00) x (—00,00).
We calculate Hyoi(z;t), kK = 1,..., N, from the system (1.15), and then with
the help of the formula (1.14) we find:

N
Hia(z,z;t) = (det A)_1 Z (det A(j+N))e%kf+”’, (1.16)
j=1
where k; = 2iX}, kjyn = kj = —2iA}, the matrices 4 and AU*N) are written
in the block form. Namely,
A= (]TII AI/I) , 1 isthe N X N unit matrix, (1.17)

s = Ly N
M = [Mys (o, t)ek s +hamz]

N
M= [— sz(z,t)e%(’“‘“““”)’] X
)=

l,j=1

o0
Mij(z, t)ekithssmle — / piz + 7, t)es kitkien )T gr, (1.18)
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AU+N) gtands for the matrix obtained from the matrix A substituting the el-
ements in its (j + N)-th column by the column of the right-hand side of the
system (1.15).

The kernel (1.16) is related to the potential by the equality [6]:

2iHio(z, z;t) = c1(z, t) = —ig(z, t). (1.19)

It follows from (1.16) and (1.19) that the general N-soliton solution of the NLS
equation {1.10) has a complicated structure:

(z,t)
(z,t)’

Q

q(z,t) = (1.20)

T

N
where F(z,t) = det A, G(z,t) = —22 (det A(HN))e%knnz_
j=1

Our paper is constructed as follows. In Sec. 2 we find the representations
of F and G. In Sec.3 we assume that the singular numbers of the problem
(1.1), (1.2) satisfy some conditions, then with the help of the obtained represen-
tations we prove that the normalization polynomials of (1.13) are reduced to the
corresponding normalization factors. Further, in Sec. 4 using Hirota’s method
we show that the general N-soliton solution of the NLS equation (1.10) is given
by the transform (1.20), wherein F and G are represented in the explicit forms
in terms of the normalization factors.

2. The Representations of F and G

Lemma 1. The value of the determinant F of the matriz A is real and F is
represented in the form:

2N
F(z,t)= Y Di(wau(z,t) [] e, (2.1)
p;=0,1 j=1
where the summation is taken over u, p = (11, 42, ... , pon), tn addition p; =
0, 1; au(z,t) is a polynomial of x with coefficients depending on t and
N N
1 when > p;= ) pjsn,
Di () = Z:: ; (2.2)
0 otherwise.
Proof. We write the expansion of det A:
F=detA= E signo’Ala(l)A%(z) e A2NU(2N)1 (23)
o

where the summation is taken over all permutations o of 2N numbers.
Consider a nonzero term corresponding to a permutation o. Putting

AY = {j:0() =34}, AL ={i: o(j) #j and j < N},

2.4
A2 ={j: o(j) #jand j > N}, 24)
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and taking the structure of the matrix A into account we can verify that
o(A}) = A2, o(42) = 4;. (2.5)

Beside ¢ we introduce another permutation & depending on o: 6(j + N) =
o(j) — N for j € AX; 5(j — N) = a(j) + N for j € A2;5(j) = j otherwise, then

Al={j:j+NeA}; AZ={j:j-NeA}
o a (23 o

e . (2.6)
signg = signo and & = 0.
It follows from (1.17), (1.18) and (2.6) that
If j € AL then k = j + N € A2 and
Ajsj) = Ak—No(k—-N) = Ak-No(k)+N = —Ago (k) @7)
ifjeA?—,thenkzj—NeA},and ’
Ajs(j) = Ak+No(k+N) = Ak+No(k)-N = — Ak (k)
Due to (2.4)—(2.7) the nonzero terms corresponding to ¢ and & are
signaAla(l)Aga(g) - A2Na-(2N) = signa H Ajo'(j) H Ajo'(j), (28)
jEAL jEA2
signd A15(1)A2s(2) - - - Aans(an) = signo H ( ww Zka(k)) H ( = Zka(k))
keA2 ke AL
= signa H Zka(k) H Zko‘(k)' (29)
JEAL jeAZ

Hence, the right-hand sides of (2.8) and (2.9) are complex conjugate to each
other.

We decompose permutations corresponding to nonzero terms of (2.3) into
two sets.

The first set consists of permutations satisfying the condition: o = &, while all
the others belong to the second one. Due to (2.7)-(2.9) the terms corresponding
to permutations of the first set are real.

The permutations of the second set are grouped in pairs: {¢,&}. By virtue
of (2.7)-(2.9) two terms corresponding to every pair of permutations o and &
are complex conjugate to each other, therefore the sum of these terms is a real
function. The determinant of A is the sum of real functions. Hence, the value
of det A is real.

Using (1.17), (1.18), (2.5) and (2.6) we write the term (2.8) in the form:

I 4s0ir 1T 4io0)

jeAl j€eA?
- kitkag) kitko() o
= II (—Mja(j)—N) 1Moy [Te7= "1l
j€AL €Az jeA} J€A2

=1 (—Mjau)—zv) I1 Mj-wey IT €% 1 ¢ (2.10)

jEAL jEA2Z JEAL JEA2
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Due to (2.10), the sum (2.3) can be rewritten as:

2N
Z signoAla(l)Aga@) Joes AZNU(ZN) = Z d(l’, t) H e“jkﬂ, (211)
4 a j=1
where o . —
a(z,t) = signo H ( - Mja(j)—N) H M;_No(5)s
jeA} JjEA2

a(z, t) is a polynomial of z with coefficients dependingon ¢, p = (u1, p2, ... , o),
pj=1if j € AL U A2 and p; = 0if j € 4.

After the sum (2.11) had been grouped in exponential terms together, the de-
terminant F of A is represented in the form (2.1). The formula (2.2) is obtained
from (2.4)-(2.5) and the coefficient D;(u) in (2.1) is defined by the formula (2.2).
The lemma is proved.

Lemma 2. The kernel (1.16) is represented in the form:

2N
Hys(z,z +t) = (det A) ™" Z (Dg(u)bu(x,t)l_[e“fkf’>, (2.12)

pi=0,1 =1
where the summation is taken over p, p = (1,42, ... , oN), in addition p; =
0, 1; by(x,t) is a polynomial of z with coefficients depending on t and
N N
1 when 1+ uj = Hi+Ns
Dy(u) = ; ]Z; i (2.13)

0 otherwise.

Proof. Let BU+N) be the matrix obtainedkfrom the matrix AU+Y) multiplying

the elements of its (j+N)-th column by e 3%, Then the elements By of the
matrix BUtN) are:

By = —Mim—_ne2®15m)% for | < N <m and m # j + N,
By, = My nmekt+km)® for | > N >m, By=1forl#j+ N,
Bijin = —ﬁ,_Ne%(k”Lk“N)”” for | > N, Bj, =0 otherwise. (2.14)

The expansion of det BU+N) is
det B(J+N) = Z signaBla(l)B%(z) 5. . B2No’(2N)’ (215)
o

where the summation is taken over all permutations o of 2N numbers.
A nonzero term corresponding to a permutation ¢ of the sum (2.15) can be
written in the form:

signoBi,(1)Bas(2) - - - Bano(2n) = Signo H Bisqy H B H Bisqys
leBY leB! leB2
(2.16)
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where the sets By, B; and B2 are determined analogously to the sets A2, Al
and A2 defined by (2.4). ‘
It follows from the matrix BU+N) that

If | € B; then o(l) € B2\ {j + N}, i.e, o(BL) C B2\ {j + N}, (2.17)
if I € BZ then o(l) € B} or o(l) = j + N, ie., 0(B2) C BLU{j + N}.(2.18)
There are two cases.
Case 1: g(j+ N) = j+ N, ie, j+ N € B). In this case the relations (2.17)
and (2.18) are: o(BL) C B2 and ¢(B2) C BL. Hence,
o(By) = B2, o(B%)= B} for j+ N e BL. (2.19)
The equalities (2.5) and (2.19) show that in the case 1 the permutation o of

B has the same property as the permutation o of Al. Hence, by an argument
analogous to that used for the proof of equality (2.11) we get

2N
signoBio(1)B2o(2) - - - Bano(2n) = lA)(a:,t)ekJ“r"’z H etk (2.20)

=1
I#i+N

where u = (u1, p2, .- . , pi2n), in addition p; = 0 for { € BO\ {j + N}, Uiy N =
1, =1forl ¢ BY; B(a:, t) is a polynomial of z with coefficients depending on t.
Case 2: 0(j + N)# j+ N, ie., j+ N € B2. In this case we have

" o(B)=B2\{j+ N} and ¢(B2) = BLU{j + N}. (2.21)
Using (2.21) we obtain from (2.16):

signo H Bis(y H By H Bio(y

leBY leB! leB2

G TV
leB!

x { E_Naa)e%(k”k"‘”)’}
1€B2\ [ (4 N)}

X (_ﬁa—’(J'+N)—N)6%(k"_1(j+N)+kj+N)m

=3 signg{ H (_Mlo'(l)—N)e%k'I}{ H e%klz}

leB} lea(BLl)=B2\{j+N}
Mt—Na(l)e%k'z}{

7 B vz w155 § (kprian g a4 mni
X Mjo(jrn)e? ™" X (=Po-1(j4ny—n)e? "o G+ %eatit

:B(I,t)ekj.HvI H eklz: H ek[:c

X { ezk;z}
leBZ\{o~1(j+N),j+N} lea(BN\{j+N}=B}

leB} leBZ\{j+N}
—~ 2N
= b(z,t)ekive [ emkes, (2.22)

=1
I#£i+N
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where

b(z,t) = signo(—B,-1(j4N)-N) H (=Mie(y—n)
leBl

X II Mi_Now), (2.23)
leBZ\{e"1(j+N)}

and pu = (p1, o, ... ,pon), w=0forl € BS, yy=1forl ¢ BY.
Hence, the sum (2.15) is written as follows:

2N
det BUtN) (g, 1) = Zb*(x,t)ekj“"” H etk
= 1=1

L#T+N -
- > (bt e ).
I=1 (2.24)

up=01, l#£j+N
Hi+N=1

Here the polynomial b*(z,t) is b(z,t) from (2.20) or b(z,t) from (2.23) corre-
sponding to the permutations o from (2.20) or (2.22). After the sum in the
left-hand side of (2.24) has been grouped in exponential terms together, we ob-
tain the right-hand side of (2.24), wherein b1, (x,t) is a polynomial of z with
coefficients depending on t. The formula (2:13) is obtained from (2.19) and
(2.21) and the coefficient D2(p) in (2.24) is defined by (2.13). From (2.24) we
have

N 2N 9N
> Y (Db o]t = 3 {Datwipate,) [T e}
j=1 p;=0,1,l#i+N 1=1 1;=0,1 =1

Hj+N=1

(2.25)
After the sum in the left-hand side of the equality (2.25) has been grouped in
exponential terms together, we receive the right-hand side of one, wherein b, (z, t)
is a polynomial of z with coefficients depending on ¢. Hence, the representation
of the kernel (2.12) is obtained from (1.16) and (2.25), which is what we wished
to prove.
Thereby, the general N-soliton solution g(z, t) of (1.10) is presented by the trans-
fom (1.20), wherein F is defined by (2.1) and G is

N
G(z,t) = —2) det BU+N)

=1

2N
=-2 ) {Dz(u)b“(:q,t)ne"ik”}, (z,t) € (0,00) X (—00, 00).
j=1

#;=0,1
3. On the Degree of the Normalization Polynomials

It is easy to prove by induction the following lemma.
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Lemma 3. Let aj(z), j = 1,2,...,m be polynomials of z and ay,...,ambe
different complex numbers, then the following indentity

a1(z)e**® + ag(2)e**® + ... + an(z)e®" =0
holds if only if a;(z) =0, j =1,...,m.
The potential g(z,t) satisfying the NLS equation (1.10) belongs to the class
of nonscattering potentials satisfying the estimate (1.3). Substituting (1.20)

into (1.10) and using the reality of F' and the operators D [1], we write the NLS
equation in the form:

K(F,G) = F{iGiF — iGF; — G4z F + 2G. F; — GFp,}
+ G{2F,.F - 2F2 - 2GG} = 0, (3.1)

E F(iD; —~ D)Go F+ G(D2F o F - 2GG) = 0.

Let the scattering data (1.13) consist of only one pair of singular numbers: A}

and A7, AT = AT, Im AT > 0 and let n be the multiplicity of the given singular
numbers. In this case F and G defined by (2.1) and (2.26) are

F =14 |My|2e®rtkdz . G =9pe*®, ki =2iNf, k2=-2iA], (3.2)

where M, is defined by (1.18) and p; is the polynomial of degree n — 1:
p(2z,t) = @ 12 4+ ... + ao.

Hence, the explicit form of the solution of (1.10) is

2p, e*2*
Q(I7t) . 1 + |M11|2e(k1+k2)z *

(3.3)

Substituting (3.2) into (3.1) and using Lemma 3 we obtain three equations:

7:plt =2 (kgpl + 2]9251:3 1 ﬁlzz) = Oa (34)

~ 19y (|M11]?)e + 2(k2P, + P1z) [(|M11|2)x + (k1 + k2)|M11|2] — 8Pip1

+ P [(|M11|2)m + 2(ky + k2)(|M11[*)z + (k1 + k2)2|M11I2] =0, (3.5)

2
4p,p1 | M |* - [(|M11|2)z + (k1 + k2)|M11I2] =0. (3.6)

Integrating the right-hand side of (1.18) by parts (n — 1) times successively,
finally we receive

n—1 9 +1 dl
Mu(ﬂ?,t):Z(—m) (Wp1(x+r,t)
1=0

m). 3.7)

Differentiating both sides of the equality (3.7) with respect to z we have
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M11;,;(.’L‘,t) = —(kl + kz)Mll(IL‘,t) — 2p1(2a:,t).

Hence,

P1 (2.’1:, t) = -% [(kl + kz)Mn(.’L',t) + Mllz(.’l,‘, t):| y (38)
p,(2z,t) = —-;— [(kl + k2)Ma11(z,t) + M1y, (z, t)] . (3.9)

Substituting (3.9) into the left-hand side of (3.4) we obtain
iMi1 — k3M1y — 2koM 11z — M11ze = ae~®*1+%2)% - is some constant.

Since M3; is the polynomial of z, a is zero. Then

iMu1; = k3 M1y + 2ka Mg + M1z, (3.10)
—iMi1: = k%M]l + 2k1 M1z + Mi1zz. (3.11)

Substituting (3.10) and (3.11) into the left-hand side of (3.5), we obtain
S — — AR
(kl + kz)z(MllMllMll:c + MuMllz) + (kl ata kz)(MllMllMllzz
+ ]_folMll:c:c + My M1z Mz + Mnﬁflx)

+ (M11M11: M 1122 + M11 Mi1zo Mi1z + M1 My My12;) = 0.
(3.12)

Since the degree of M;; is equal to n — 1, the left-hand side of (3.12) forms a
polynomial of degree 3n — 4. Then using (3.7), from (3.12) we can verify that
the coefficient of 23”4 of the polynomial is

—16(r — 1)(k1 + k2)—lan_1(ﬁn_1)2 =0, ki+ko= —4Im)\f < 0.

If n > 1, then it follows from (3.12) that a,—; = 0, this contradicts the hypothesis
that the degree of the polynomial p; is n — 1. Hence, the degree of p; is zero,
i.e,, n =1, so we can put p; = C(t). Substituting p; into (3.4) gives

p1 = Ce*it,  C is a constant. (3.13)
Then due to (3.8):
T (3.14)
ki + k2

It is clear that M, satisfies (3.6).

We can verify the truth of the converse assertion: if p; and M;; are defined
by (3.13) and (3.14) respectively, then ¢; constructed by (3.3) satisfies the NLS
equation (1.10). The results obtained above can be started in the following
lemma.

Lemma 4. The nonscattering potential (1.19) constructed from one pair of
singular numbers: )\f, Al /\f = A7, Im AT > 0, of the system of linear equations
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(1.1) satisfies the NLS equation (1.10) if and only if the polynomial p; generated
by the pair of singular numbers is reduced to the normalization factor and evolves
according to (3.13).

We proceed now to consider the general case when the set (1.13) consists of
N pairs of singular numbers. For this purpose we substitute (2.1) and (2.26)
into the equation (3.1). Further, the terms of the obtained equation are grouped
in exponential terms together, then the NLS equation (3.1) takes the form:

2N
KRG = Y auzt) [[em™® =0, (3.15)
14;=0,1,2,3 j=1
where G, (z,t) is a polynomial of x with coefficients depending on ¢.
We assume that for every pair of singular numbers: A} = %kj, A7 = kN,
j=1,...,N, the equality
2N
alkj + Olzkj+N = Z,@lkl (3.16)

=1

holds if and only if 8, = 0 for | # 4,7 + N and a; = §;, ag = B;+n, where
ai, 9,0 =0,1,2,3. We consider a particular case of the diffirential polynomial
K(F,G):

K (1+ | My 2elbsthasme, 2,e5+4%), j=1,..,N. (3.17)

Let a permutation o in (2.7) be defined by the sets: AL = {j} and A% = {j+ N},
where the index j, 1 < j < N, is fixed. Then, taking the structure of A into
account we have

Sign(IAla(l)Aza(g) ce A2Na(2N) r Iij]ze(kJ+kj+N)z, ] = ]., ceey N. (3.18)

Under the assumption (3.16) there exists the term (3.18) in the representation
(2.1), ie., the term (3.18) can not be grouped in exponential terms with any
other term of (2.3). Indeed, if there exists a term of the sum (2.3) corresponding
to the permutation o}, which can be grouped in the exponential term together
with the term (3.18), then

2N
H ek H ek = e(k-"‘_._k""""):c thus k; + kjon = Zﬂ-lkl, (3.19)
leAl,  leAZ =1

where yu =0 for | € AY and py =1forl € A; UAS .
Due to (3.16) the equality (3.19) is fulfilled only in the following case:
pj = pj+n =1 and gy =0 for any I # j, j+N.

Hence, AL = {j} and A2, = {j + N}, ie., the permutation o coincides, with
the permutation . Therefore, the term (3.18) in (2.3) can not be grouped in
exponential term together with any other term of (2.3).
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Using the assumption (3.16) by an argument analogous to the previous one we
can show that there exist in (2.1) the term 1 and in (2.26) the terms 2p;(2z,t).
eki+NT 5 =1, ..., N. Further, in the same way we can prove the following lemma.

Lemma 5. If the assumption (3.16) is fulfilled, then for every j, 1 < j < N, the
coefficients of the ezponential functions: el@kit(a+kiin)z o =01 2, in (3.15)
and (3.17) coincide with each other.

We are now in a position to prove the following theorem.

Theorem 1. Let the solution of the NLS equation (1.10) be constructed by
the transform (1.20) in terms of the given scattering data (1.13), wherein every
pair of singular numbers satisfies the assumption (3.16). Then the normalization
polynomials of (1.13) are reduced to the corresponding normalization factors and
evolve according to the evolutionary equations:

pj = Cje“cfzt, —0o<t< oo, Cjisaconstant, j=1,...,N. (3.20)

Proof. Let G and F in (1.20) satisfy equation (3.15), wherein the coeflicients
a,,(z,t) of exponential functions are polynomials of z. Then in view of Lemma 3:

a,(z,t) = 0. (3.21)

Further, by virtue of Lemma 5 the coefficients of exponential functions in
(3.17) are the same (3.21), i.e., the coefficients of exponential functions: e*i+¥=,
elki+2k;+n)z and e(2ki +3ki+n)T of (3.17) are identically zero. Hence, from (3.17)
we obtain N equations for every fixed pair of singular numbers:

K(2ﬁje’“f+”’, 1+ |Mj,-|2e("‘f+’“f+N)z) =0, j=1,...,N. (3.22)
Applying Lemma 4 to every equation of (3.22) we obtain the evolutionary equa-

tions (3.20). The theorem is proved.

4. Constructing the General N-Soliton Solution

In this section we construct the general N-soliton solution of the equation (3.1)
in terms of the given scattering data (3.20). For this purpose we need to calculate
the coefficients a,(z,t) and by(z,t) in the sums (2.1) and (2.26). Indeed, let the
normalization polynomials evolve according to (3.20), then due to (1.18):

2C; 2 — 2C _ik2
My = ——————e™tt,  Mjj = —————e "irnt 4.1
ti ki+kjwn g kivn + k‘j ( )
Putting
Qj = —’L'k‘JQ-, Cj+N = _C—j, Qj+N = ﬁj, €; = QCjeij_Q"t, €EirN = éj,

§=1..,N, (4.2)
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we write the nonzero elements Aj;, [ # j, of the matrix A:

ey —ky
ki FE
Ay = 21 g TR AN <N,
ki +k; ki + k; (4.3)
kej—ky .
201 Lihuleripigh of E'{EJ'Z_'E

A = — Tl e e s [ .

BT TRtk AR onk> N

By virtue of Theorem 1 a nonzero term of the sum (2.1) can be written as:
2N
X, = Di(p)a, [ ] %, (4.4)
j=1

where ay, = au(oat)a H= (,U'lnu'2, v 7lu‘2N)'
We can assume that the fixed u from (4.4) defines the following sets of indices:

Ao={j:1<j<2N,p; =0} ={m,..,mg}, my <...<my,
Al:{j:jSN’,u/j:1}={j17'-"jn}7 jl <'--<jnSN» (45)
.A2={j:j>N,p,j=1}Z{l1,...,ln}, N<l1<...<ln, k+2n=2N.

Let a permutation o from (2.11) correspond to the considered . The permu-
tation o possesses the properties (2.4)-(2.5). The set of all permutations ¢
corresponding to the considered p is denoted by J. It is clear from (2.4) and
(4.5) that if o € J, then A, = A2, p = 0,1,2, where A%, p = 0,1,2, are
defined by (2.4). Conversely, if 4, = AP, p = 0,1,2, then the permutation
o belongs to the set J. Hence, the set J consists of all permutations o such
that o(A;) = Az,0(A2) = Ay and o(j) = j for j € Ap. Using (4.3) and the
properties of the set J we can write the nonzero term (4.4) in the form:

XH = Z SignUAjla(jl) i Ajna(jn)Aha(h) o & Alna(ln) =det A, (4.6)
oeJ

where the matrix A is written in the block form:

A= ( 0] [o]nn ) , [0] is the n X n zero matrix,

[Blnn (0] ‘
[a]n,n 1 [ajslr]:,r=1’ [,H]'n,,n = [/Blrjs]:‘l.s=1’ (47)
ki —kjs kis —kip
oy Ut o 0 A
aJslr — er klr + k:js 9 Irjs L kjs + klr d
Using (4.7) we calculate
det A= [] ejmere  []  im — ki) (ki —ki)? I . +k,)2
m=1 1<m<m’/<n m,m/=1

2N
=1 I e5™. (4.8)
j=1

1<I<j<2N
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where
(ki +k;)™2 forl<N<jorj<N<l,

O =By —
B il { (ky—k;)*> forl,j<Norlj>N.
Hence, from (2.1), (2.2), (4.6) and (4.8) we obtain the explicit representation of

F:
2N
Fz,t)=detA= »_ Dl(ﬂ){Heg‘f 11 Q;;'“f}. (4.10)

£#;=0,1 1<I<j<2N

(4.9)

Further, we find the explicit representation of G. In view of Theorem 1 a nonzero
term of the sum (2.26) can be written as:

2N
Y, = Da(p)by [ [ 5%, b, =b,(0,1). (4.11)
=1

According to the calculations (2.24)—(2.26) the term (4.11) can be represented
in the form:

N
Ya= > Yum (@12)
j=1

2N
where Yjin = Da(u)b1, He“‘k”, b1, = b1,(0,t).
=1
We can assume that the fixed u from (4.11) defines the following sets of indices:

Bo={j:1<j<2N,p; =0}={my,... ,mg}, mi <...<mg,

Bi={j:5<N,p;=1}={j1,-..,dn}, 1 <...<jn <N,

Bo={j:7>N,pj=1}={l,... ,lnyi}, N <li <...<lpq1,
k+2n+1=2N.

(4.13)

Let the permutations o from (2.20) and (2.22) correspond to the considered

= (t1,..., pon). Let pjon =1, then there are two cases:
Case 1: o(j + N) = j+ N. In this case
B)=BoU{j+ N}, B;=Bi, B}=B\{j+N}, (4.14)

where the sets B2, p =0, 1,2, are determined in (2.16).
Cases 2: o(j + N) # j + N, then

BY =B,, Bl=B;, B2=08,. (4.15)

We denote the set of all permutations ¢ corresponding to the considered p by
JI*tN | Hence, if 0 € J7* then the condition (4.14) or (4.15) is fulfilled. Con-
bversely, if the condition (4.14) or (4.15) is fulfilled, then ¢ € J7*V. Hence,
the set J7*/ consists of all permutations ¢ such that o(l) = | for | € By and
o(By) = B2 =By \ {j + N}.

Now we calculate the term Y n. If sy v = 0, then it follows from (2.24), (2.25)
that Y4y = 0. If pjyn = 1, then due to (4.13)-(4.15): j+ N =1, € By,s =
1,...,n 41 and the nonzero term Y;n is
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Yjin = Z signo B, (1) - - -Bjno(n)Bio(ty) - - - Blasrolnsr)
= det DU+N), (4.16)

where By; the elements of the matrix BU+N) and the matrix DUTN) is obtained

from the matrix:
( [O]nyn [a]n,n+1 )
[,Bn+1,n [0]n+1,n+1 ’

substituting the elements in its (n + s)-th column by

1 ki, —ky 1 by, =k o T
(0,...,0,—56116 2 I,...,—ielnHe z I’”) .

Here [an n+1, [B]n+1,n are matrices of the sizes: nx(n+1), (n+ 1) x n respectively
and the elements of (@] n+1 and [B]ni1,n are defined by (4.7).

By virtue of the representation (4.16) the term (4.12) is written as

Yu= Y detDUM =detD,

j+NeB;
0| [“] irtcl ¥y "“Ir-. 1
where D = [Olnn LR SR | [ S o ;
([.B]n.-.tl.'n h']n+1,n+l [‘Y}n+l, d 2% rj=1
Then using (4.9) we calculate A
1 n n+1
Yo=-3 Il em [Me. II Goin ki)
m=1 m=1 1<m<m’<n
1<m<m’<n+1 1<m<n
1<m/ <n+1
12N
=—5 11 11 25" (4.17)
j=1  1<I<j<2N

Due to (4.17) the formula (2.26) is represented in the explicit form:

2N
Glz,ty= Y, Dz(u){ﬂe;‘i 11 @fg.l“f}. (4.18)
j=1

i =0,1 1<I<j<2N

The representations of F and G by the formulas (4.10) and (4.18) are similar to
the ones in the works [1,3]. We can prove that the constructed functions F' and
G satisfy the following Hirota equations [1}:

(iDy — D2)G o F =0, (4.19)
D?F o F =2GG. (4.20)

Then F and G satisfies the NLS equation (3.1). The results obtained in this
section can be stated as a converse assertion to Theorem 1. Namely
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Theorem 2. Let p;, j=1,...,N, from the set of scattering data (1.13) be the
normalization factors (3.20), then the functions F' and G in the transform (1.20)
are represented in terms of the given scattering data (3.20) in the explicit forms
(4.10) and (4.18) respectively, and the transform (1.20) is the N-soliton solution
of the NLS equation (3.1).
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