Vietnam Journal of Mathematics 30:3 (2002) 289-294

Vietnam Journal of MATHEMATICS © NCST 2002

On Finite Groups Whose Every Normal Subgroup is a Union of the Same Number of Conjugacy Classes*

Ali Reza Ashrafi and Heydar Sahraei

Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

> Received February 7, 2001 Revised August 25, 2001

Abstract. Let G be a finite group and \mathcal{N}_G denote the set of non-trivial proper normal subgroups of G. An element K of \mathcal{N}_G is said to be n-decomposable if K is a union of n distinct conjugacy classes of G.

In this paper, we investigate the structure of finite groups G in which G' is a union of three distinct conjugacy classes of G. We prove, under certain conditions, Gis a Frobenius group with kernel G' and its complement is abelian. Furthermore, we investigate the structure of finite groups G in which $\mathcal{N}_G \neq \emptyset$ and every element of \mathcal{N}_G is *n*-decomposable, for a given *n*. When *G* is solvable or n = 2, 3, 4, we determine the structure of such groups.

1. Introduction

Let G be a finite group and let \mathcal{N}_G be the set of non-trivial proper normal subgroups of G. Following Shahryari and Shahabi [10], we say that a normal subgroup H of the group G is a small subgroup if $H = 1 \cup Cl_G(h)$, in which h is non-central and $Cl_G(h)$ denotes the G-conjugacy class containing h. It is easy to see that $H \leq G'$ and |H|(|H|-1)||G|. Moreover, H is an elementary abelian normal subgroup of G. In [10], Shahryari and Shahabi studied the structure of

^{*}This research was supported in part by a grant from IPM.

finite groups with a small subgroup. They proved that, under certain conditions, G is a Frobenius group with kernel H.

In this connection, one might ask about the structure of G, if G has a normal subgroup which is a union of three or four distinct conjugacy classes. For convenience, we say that a normal subgroup of G is *n*-decomposable if it is a union of *n* distinct conjugacy classes of G.

In [11], Shahryari and Shahabi studied the structure of finite groups G with a normal subgroup H which is 3-decomposable. They proved that H is either an elementary abelian subgroup, a metabelian *p*-group or a Frobenius group with elementary abelian kernel H'.

In [12], Riese and Shahabi determined the structure of finite groups G with a normal 4-decomposable subgroup H. In this case, they proved that the number of characteristic subgroups of G is at most 4 and H is either a p-group with H'' = 1, an alternating group of degree 5 with $G/C_G(H) \cong S_5$ or a subgroup of order $p^a q^b$, where p, q are distinct primes and a, b are positive integers. Also, they determined the structure of the subgroup H, when H is a subgroup of order $p^a q^b$, in which p, q are distinct primes and a, b are positive integers.

In this paper, as usual, G' denotes the derived subgroup of G, Z(G) is the center of G, $\Phi(G)$ is the Frattini subgroup of G and $E(p^n)$ is an elementary abelian group of order p^n . Throughout this paper, all groups considered are assumed to be finite. Our notation is standard and taken mainly from [2, 4, 6].

2. Main Results and Theorems

Let h be a non-central element of a group G and let $H = 1 \cup Cl_G(h)$ be a small subgroup of G. In [10], Shahryari and Shahabi studied the structure of G with the additional condition that G' = H and Z(G) = 1. With this condition, they proved that G is a Frobenius group with kernel H and its complement is abelian. Moreover, $|G| = |H|(|H|-1), C_G(h) = H, G$ has exactly one irreducible non-linear character χ with $\chi(1) = [G:H]$ and $\chi(h) = -1$.

In what follows, under certain condition, we improve this result to the case that G' is 3-decomposable.

Theorem 1. Let G be a finite centerless group, $G' = 1 \cup Cl_G(g) \cup Cl_G(h)$, g, h be non-conjugate and non-central elements of G and $h^{-1} \in Cl_G(g)$. Then the following assertions holds:

- (i) G is solvable and G' is the unique minimal normal subgroup of G,
- (ii) G is a Frobenius group with kernel G' and its complement is cyclic,
- (iii) G has exactly two irreducible non-linear character χ and ψ with $\chi(1) = \psi(1) = |G:G'|$,
- (iv) $|G| = (1/2)p^a(p^a 1)$, in which $p^a = |G'|$.

Proof. It follows from [11, Proposition 1] and its proof that G' is elementary abelian and is a minimal normal subgroup of G. Suppose $1 \neq L \trianglelefteq G$. Since $Z(G) = 1, 1 \neq [G, L] \subseteq L \cap G'$, and so $|L \cap G'| > 1$. By the minimality of G', we have $G' \subseteq L$. So G' is the unique minimal normal subgroup of G. Again, since

On Finite Groups Whose Every Normal Subgroup is a Union of ...

Z(G) = 1, by Theorem 5.2.1 of [8], G is not nilpotent, and by Wielandt's theorem ([8]), $G' \not\subseteq \Phi(G)$. Therefore, there exists a maximal subgroup M of G such that $G' \not\subseteq M$. Now $G' \cap M \trianglelefteq M$ and so $M \le N_G(G' \cap M)$. Since G' is abelian, $G' \cap M \trianglelefteq G'$, hence $G' \le N_G(G' \cap M)$. This shows that $G = G'M \le N_G(G' \cap M)$. Hence $G' \cap M$ is a normal subgroup of G. As G' is the unique minimal normal subgroup of G, $G' \cap M = 1$. This shows that M is an abelian subgroup of G and G is solvable.

Suppose $M \trianglelefteq G$. Since $M \cap G' = 1$ and G = G'M, by Theorem 2.5.2 of [3], $G \cong G' \times M$. So G is abelian, a contradiction. Assume $g \in G \setminus M$, then $M^g \neq M$. As M and M^g are abelian subgroups of G, they are contained in $N_G(M \cap M^g)$. Therefore $M \cap M^g$ is a normal subgroup of $\langle M, M^g \rangle = G$, G is a Frobenius group with kernel G' and its complement is abelian. As a Frobenius complement cannot contain any subgroup of type (p, p), any Frobenius complement of G is cyclic.

Since G is a Frobenius group with complement M, each irreducible character of M extends uniquely to an irreducible character of G containing G' in its kernel. So, by [7, Theorem 5.1], G' has two G-conjugacy classes of non-principal irreducible characters. Suppose η_1 and η_2 are two representatives of these classes. If $\chi = \eta_1^G$ and $\psi = \eta_2^G$ then χ and ψ are the only irreducible characters of G and $\chi(1) = \psi(1) = |G:G'|$. Furthermore, since G' is abelian, (|G'| - 1)/|M| = 2. This completes the proof.

The following lemma, which improves Corollary 7 of [11], will be used later.

Lemma 1. Let $H = 1 \cup Cl_G(g) \cup Cl_G(h)$, $h^{-1} \in Cl_G(h)$ and (o(g), o(h)) = 1. Then H is a Frobenius group of order $2^n p$, where $p = 2^n - 1$ is prime.

Proof. Without loss of generality, we can assume that $gh, hg \in Cl_G(h)$. By Lemma 3 of [11], H is a Frobenius group of order $p^m q^n$, for some distinct primes p and q, and some positive integers n and m. By Lemma 5 of [11], H' is a small subgroup of H, and, by Lemma 4 of [11], Z(H) = 1. So, by Theorem 2.1 of [10], |H| = |H'|(|H'| - 1). On the other hand, by Lemma 6 of [11], $|H| = pq^n$. This shows that $p = q^n - 1$ and so q = 2. This concludes the proof of the lemma.

From now all, G is assumed to be a finite non-complete group, i.e. $G' \neq G$. We investigate the structure of the group G with the condition that every nontrivial proper normal subgroup of G is *n*-decomposable, for a given *n*. We denote the set of all such positive integers by Λ . In the following simple lemma, we determine the structure of abelian groups with the mentioned condition.

Lemma 2. Let G be a finite abelian group in which any non-trivial proper normal subgroup is n-decomposable. Then n is a prime number and G has order n^2 .

Proof. Elementary.

The previous lemma shows that $p \in \Lambda$, for any prime p. In the following example, we show that $1 + (p-1)/q \in \Lambda$, in which p, q are primes and q|p-1.

291

Example 1. Let G be a non-abelian group of order pq, in which p and q are primes and p > q. It is well known that q|p-1 and G has exactly one normal subgroup. Suppose that $H = \langle a \rangle$ is the normal subgroup of G. Then H is (1 + (p-1)/q)-decomposable. This shows that $1 + (p-1)/q \in \Lambda$, for any pair of prime numbers p and q with q|p-1.

In the following theorem, we investigate the structure of a finite solvable group G with the condition that every normal subgroup of G is *n*-decomposable. In fact, we have:

Theorem 2. Suppose that G is a non-abelian and every element of \mathcal{N}_G is n-decomposable. We have:

- (i) Every element of \mathcal{N}_G is maximal and also minimal in \mathcal{N}_G ,
- (ii) G is centerless or n is a prime number and |Z(G)| = n,
- (iii) If K and L are two distinct elements of \mathcal{N}_G , then $G = K \times L$,
- (iv) If K is a solvable element of \mathcal{N}_G , then it is elementary abelian,
- (v) If every element of \mathcal{N}_G is solvable, then \mathcal{N}_G consists of only one element,
- (vi) G is solvable if and only if G' is abelian; in such a case, $\mathcal{N}_G = \{G'\}$, $G' \cong E(p^r)$ and is maximal in G, G is a Frobenius group with kernel G' and its complement is a cyclic group of prime order q with $p^r - 1 = (n-1)q$.

Proof. (i), (ii) and (iii) are obvious. For (iv), we can see that K is characteristically simple. As K is solvable, it is elementary abelian. (iv) is then proved. We now assume that every element of \mathcal{N}_G is solvable and K and L are two different elements of \mathcal{N}_G , then by (iii) and (iv), G is abelian, a contradiction. So (v) follows.

Finally, assume that G is solvable. By (v), $\mathcal{N}_G = \{G'\}$ and, by (i), G' is a maximal subgroup of G. This shows that |G:G'| = q with q prime. Since G' is a minimal normal subgroup of G, G' is an elementary abelian subgroup of order, say p^r . Thus, $|G| = p^r q$. Since G is not abelian, $q \neq p$ and $C_G(x) = G'$, for any $x \in G'$, $x \neq 1$. Therefore, by [7, Theorem 1.2], G is a Frobenius group with kernel G'. Since G' is abelian, by [7, Theorem 5.1], n-1 = (|G'|-1)/q. Therefore, $p^r - 1 = (n-1)q$, as desired.

Theorem 3. Suppose that every proper non-trivial normal subgroup of G is small. Then one of the following holds:

(a) G is an abelian group of order 4,

- (b) G is isomorphic to S_3 , the symmetric group on three symbols,
- (c) G is isomorphic to the semidirect product Z_p×E(2ⁿ), in which p = 2ⁿ − 1 is prime, and, for a given positive integer n and a prime number p such that p = 2ⁿ − 1, there exists at most one such a group.

Proof. By Lemma 2, we can assume that G is not abelian. According to Theorem 2.1 of [10], G' is the unique non-trivial proper normal subgroup of G and is elementary abelian. By Theorem 2, G is a semidirect product of an elementary abelian subgroup of order q^n by a cyclic group of order p with p prime, and $p = q^n - 1$. Therefore, q = 2 or q = p + 1. If q = p + 1, then p = 2, q = 3 and

G is isomorphic to S_3 . Suppose q = 2. Then *G* is isomorphic to the semidirect product $Z_p \times E(2^n)$, in which $p = 2^n - 1$. It is well known that $\operatorname{Aut}(G') \cong GL(2,n)$ and |GL(2,n)| = pm, where (p,m) = 1. If $f: Z_p \longrightarrow GL(2,n)$ is a group homomorphism, then o(f(1)) = 1 or *p*. If o(f(1)) = 1 then *G* is abelian, a contradiction. Thus, o(f(1)) = p and the image of Z_p is a Sylow subgroup of GL(2,n), proving the theorem.

Theorem 4. Suppose that every proper non-trivial normal subgroup of G is a union of three conjugacy classes of G. Then one of the following holds:

- (a) G is an abelian group of order 9,
- (b) G is a group of order pq, p and q are primes and q = (p-1)/2,
- (c) G is isomorphic to the semidirect product $Z_q \times E(3^n)$, in which $q = \frac{3^n 1}{2}$ is prime and, for a given positive integer n and a prime number q such that $q = \frac{3^n 1}{2}$, there exists at most one such a group.

Proof. Suppose that G is non-abelian. Let H be an element of \mathcal{N}_G . As H is 3-decomposable, it follows from [11] that H is solvable. By Theorem 2, G' is the unique element of \mathcal{N}_G and is elementary abelian. Again, by Theorem 2, G is either centerless or |Z(G)| = p. If |Z(G)| = p then, since G' = Z(G), G has order pq with q prime; such a non-abelian group is then centerless, a contradiction. So G is centerless. Suppose $|G'| = p^n$ and |G|/|G'| = q, q is prime. By Theorem 2, $p^n - 1 = 2q$. Since q is prime, n = 1 or n > 1 and p = 3. If n = 1, then G has order pq with p and q prime and q = (p-1)/2. If n > 1, then G is isomorphic to a semidirect product of the elementary abelian group $E(3^n)$ by a cyclic group of order $q = (3^n - 1)/2$ with q prime. A similar argument as in Theorem 3 shows that, if there exists such a group, it is unique. This completes the theorem.

Theorem 5. Suppose that every proper non-trivial normal subgroup of G is 4-decomposable. Then one of the following holds:

- (a) $G \cong S_5$, the symmetric group on five letters,
- (b) G is a group of order pq, p and q are primes and q = (p-1)/3,
- (c) G is isomorphic to the semidirect product Z_q×E(2ⁿ), in which q = (2ⁿ−1)/3 is prime, and, for a given positive integer n and a prime number q such that q = (2ⁿ−1)/3, there exists at most one such a group.

Proof. By Lemma 2, G is not abelian. We first assume that \mathcal{N}_G contains a non-solvable subgroup H of G. By Theorem 1 of [12], $H \cong A_5$, the alternating group of degree 5 and $G/C_G(H) \cong S_5$. Suppose $C_G(H) \neq 1$. If $C_G(H) = G$ then $H \subseteq Z(G)$, a contradiction. So we can assume that $1 \neq C_G(H) \neq G$. Since H is not abelian, $H \neq C_G(H)$, $G \cong H \times C_G(H)$ and $S_5 \cong G/C_G(H) \cong A_5$, which is impossible. Therefore, $C_G(H) = 1$ and $G \cong S_5$.

We next assume that every element of \mathcal{N}_G is solvable. By Theorem 2, $\mathcal{N}_G = \{G'\}$ and G' is elementary abelian. This shows that G is a solvable group and, by Theorem 2, G is a centerless group of order $p^n q$ with p, q prime and $p^n - 1 = 3q$. Since p and q are primes, $n \leq 2$ or n > 2 and p = 2. If $n \leq 2$ then n = 1 and |G| = pq, in which p and q = (p-1)/3 are prime numbers. Thus, we can assume that n > 2 and p = 2. In this case, G is a semidirect product of an elementary

abelian subgroup $E(2^n)$ by a cyclic group of order $q = (2^n - 1)/3$ with q prime. A similar argument as in Theorem 3 shows that there exists at most one such a group. This completes the proof.

Acknowledgement. We are greatly indebted to the referee whose valuable criticisms and suggestions gratefully leaded us to rearrange the paper.

References

- 1. J. L. Alperin, Groups and Representations, Springer-Verlag, New York, 1995.
- 2. D. Gorenstein, Finite Groups, New York, 1968.
- Jr. Marshall Hall, The Theory of Groups, Chelsea Publishing Company, New York, 1976.
- 4. B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
- 5. I. M. Isaacs, Character theory of finite groups, Academic Press, 1978.
- G. James and M. Liebeck, Representations and Characters of Groups, Cambridge University Press, 1993.
- G. Karpilovsky, Group Representations, Volume 1, North-Holland Mathematical Studies 175 (1992).
- 8. Derek J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Graduate Text in Mathematics, 80, Springer-Verlag, New York, 1996.
- 9. H. Sahraei, "Subgroups which is the Union of Conjugacy Classes", M. Sc. thesis, University of Kashan, 2000.
- M. Shahryari and M. A. Shahabi, Subgroups which are the union of two conjugacy classes, Bull. Iranian Math. Soc. 25 (1999) 59-71.
- 11. M. Shahryari and M. A. Shahabi, Subgroups which are the union of three conjugate classes, J. Algebra 207 (1998) 326-332.
- 12. Udo Riese and M. A. Shahabi, Subgroups which are the union of four conjugacy classes, *Commun. Algebra* 29 (2001) 595-701.