Short Communication

On Pseudo-Buchsbaum Modules

Nguyen Tu Cuong and Nguyen Thi Hong Loan
Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam

Received November 25, 2001

1. Introduction

Throughout this note, R denotes a Noetherian local ring with the maximal ideal \mathfrak{m} and M a finitely generated R-module with $\operatorname{dim} M=d \geq 1$. Let $\underline{x}=$ $\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters (s.o.p. for short) of M. Consider the difference between the multiplicity and the length

$$
J_{M}(\underline{x})=e(\underline{x} ; M)-l\left(M / Q_{M}(\underline{x})\right)
$$

where $Q_{M}(\underline{x})=\bigcup_{t>0}\left(\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right) M: x_{1}^{t} \ldots x_{d}^{t}\right)$ is a submodule of M. It should be mentioned that $J_{M}(\underline{x})$ gives a lot of informations on the structure of M. For example, if M is a Cohen-Macaulay module, $Q_{M}(\underline{x})=\left(x_{1}, \ldots, x_{d}\right) M$ by [8], therefore $J_{M}(\underline{x})=0$ for all s.o.p. \underline{x} of M. Furthermore, it is known by [2] that $l\left(M / Q_{M}(\underline{x})\right)$ is just the length of generalized fractions defined in [10]. Therefore by [4], if M is a generalized Cohen-Macaulay module, then sup $J_{M}(\underline{x})<\infty$, where \underline{x} runs through all s.o.p. of M. In [2] we also showed that if M is a Buchsbaum module, then $J_{M}(\underline{x})$ takes constant value for all s.o.p \underline{x} of M. Unfortunately, the converse is not true in general. So in [3], we defined a class of pseudo-Buchsbaum modules M, in which $J_{M}(\underline{x})$ is a constant for every s.o.p. \underline{x}. The purpose of this short note is to communicate results on pseudo-Buchsbaum modules, whose detailed proofs are given in [3].

2. Pseudo-Buchsbaum Modules

We begin with the following definition.
Definition 2.1. A R-module M is called a pseudo-Buchsbaum module if $J_{M}(\underline{x})$ takes constant value for every s.o.p. \underline{x} of $M . R$ is called a pseudo-Buchsbaum ring if it is a pseudo-Buchsbaum module as a module over itself.

Recall that for each system of parameters $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ of M and $\underline{n}=$ $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$, the difference between multiplicities and lengths

$$
J_{M}(\underline{x}(\underline{n}))=n_{1} \ldots n_{d} e(\underline{x} ; M)-l\left(M / Q_{M}(\underline{x}(\underline{n}))\right)
$$

can be considered as a function in \underline{n}, where $\underline{x}(\underline{n})=\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right)$. Then it is natural to ask whether $J_{M}(\underline{x}(\underline{n})$) is a polynomial for \underline{n} large enough ($\underline{n} \gg 0$ for short)? One has shown in [5] that this function is not a polynomial in \underline{n} for $\underline{n} \gg 0$ in general. But Minh and the first author in [4] showed that this function $J_{M}(\underline{x}(\underline{n}))$ is non-negative and bounded above by a polynomial of degree $\leq d-2$. Moreover, the least degree of all polynomials in \underline{n} bounding above the function $J_{M}(\underline{x}(\underline{n}))$ is independent of the choice of system of parameters \underline{x}. This numerical invariant is denoted by $p f(M)$. For the convenience, we stipulate that the degree of the zero-polynomial is equal to $-\infty$. Now we recall two notions introduced in [5] as follows: A module M is said to be a pseudo Cohen-Macaulay (p.CM for short) or pseudo generalized Cohen-Macaulay (p.g.CM for short) if $p f(M)=-\infty$ or $p f(M) \leq 0$, respectively. Then by definition, p.CM modules are pseudo-Buchsbaum and pseudo-Buchsbaum modules are p.g.CM. However, the converse of these statements are not true in general.

From now on, let $0=\cap N_{i}$, be a reduced primary decomposition of 0 in M, where N_{i} is p_{i}-primary. Then we set $U_{M}(0)=\bigcap_{\operatorname{dim} R / \mathfrak{p}_{j}=d} N_{j}, \bar{M}=\widehat{M} / U_{\widehat{M}}(0)$, where \widehat{M} is the \mathfrak{m}-adic completion of M and $J(M):=\sum_{i=1}^{d-1}\binom{d-1}{i-1} l\left(H_{\mathfrak{m}}^{i}(M)\right)$. Note that this invariant $J(M)$ may be infinity. But one proved in [5] that M is a pseudo Cohen-Macaulay or pseudo generalized Cohen-Macaulay if and only if \bar{M} is a Cohen-Macaulay or generalized Cohen-Macaulay over the m-adic completion \widehat{R} of R, respectively, therefore $J(\bar{M})<\infty$. Moreover, for pseudoBuchsbaum modules we have the following

Lemma 2.2. Let M be a pseudo-Buchsbaum module. Then

$$
J_{M}(\underline{x})=J(\bar{M})
$$

for every s.o.p. \underline{x} of M.
The following results are basic properties on pseudo-Buchsbaum modules.
Proposition 2.3. The following statements are true.
(i) M is a pseudo-Buchsbaum module if and only if so is $M / H_{\mathfrak{m}}^{0}(M)$.
(ii) If M is a pseudo-Buchsbaum module and $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ is reducing s.o.p. on M, then $M /\left(x_{1}, \ldots, x_{i}\right) M$ is a pseudo-Buchsbaum for $i=1, \ldots, d$.

Proposition 2.4. M is a pseudo-Buchsbaum module if and only if the \mathfrak{m}-adic completion \widehat{M} of M is a pseudo-Buchsbaum module over \widehat{R}.

The concept of polynomial type $\mathfrak{p}(M)$ introduced in [1] plays an important role for our studying of pseudo-Buchsbaum modules.

Proposition 2.5. Let M be a pseudo-Buchsbaum module. Then $\mathfrak{m} H_{\mathfrak{m}}^{i}(M)=0$ for $i=\mathfrak{p}(M)+1, \ldots, d-1$, where $\mathfrak{p}(M)$ is the polynomial type of the module M.

3. The Main Result and Corollaries

The following characterization for pseudo-Buchsbaum modules is the main result of this note.

Theorem 3.1. Keep all notations in the previous section. Then M is a pseudoBuchsbaum module if and only if \bar{M} is a Buchsbaum module over the completion \widehat{R}.

In order to prove Theorem 3.1 we had to use a characterization of p.g.CM module in [5], Theorem 2.3 about the monomial property of a u.s.d-sequence in [7] and the following lemmas.

Lemma 3.2. For every s.o.p. $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ on M,

$$
J_{M}(\underline{x}) \leq \sum_{i=1}^{d-1}\binom{d-1}{i-1} l\left(H_{\mathfrak{m}}^{i}(M)\right)
$$

Lemma 3.3. The following statements are equivalent:
(i) $M / H_{\mathrm{m}}^{0}(M)$ is a Buchsbaum module.
(ii) M is genralized Cohen-Macaulay and pseudo-Buchsbaum.

Lemma 3.4. If M is a pseudo generalized Cohen-Macaulay module, then $J_{M}(\underline{x}(\underline{n}))=J(\bar{M})$ for $n \gg 0$ and every s.o.p. \underline{x} of M.

By Theorem 3.1, we see that, the class of pseudo-Buchsbaum modules stricly contains the class of Buchsbaum modules. Moreover, there exists a pseudoBuchsbaum module M which does not need to be a g.CM-module. On the other hand, there exist g. CM modules which are not pseudo-Buchsbaum modules. The following examples illustrate this.

Example. (1) Let k be a field and $X_{1}, X_{2}, X_{3}, X_{4}$ indeterminates. Take

$$
A:=k\left[\left[X_{1}, \ldots, X_{4}\right]\right] /\left(X_{1}, X_{2}\right) \cap\left(X_{3}, X_{4}\right) \cap\left(X_{1}^{2}, X_{2}, X_{3}\right)
$$

It is easy to see that, A is a pseudo-Buchsbaum ring $\left(J_{A}(\underline{x})=1\right.$ for every s.o.p. \underline{x} of A) but A is not a g.CM ring.
(2) Let k be a field and X_{1}, \ldots, X_{n} indeterminates ($n \geq 2$). Set $R=$ $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ and $M=\left(X_{1}{ }^{2}, X_{2}, \ldots, X_{n}\right) R$. We have the exact sequence

$$
0 \rightarrow M \rightarrow R \rightarrow R /\left(X_{1}^{2}, X_{2}, \ldots, X_{n}\right) R \rightarrow 0
$$

Since R is a CM ring and from exact sequence above we have $H_{\mathfrak{m}}^{i}(M)=0$, for $i \neq 1, n$ and $H_{\mathfrak{m}}^{1}(M) \cong R /\left(X_{1}{ }^{2}, X_{2}, \ldots, X_{n}\right) R$. Therefore M is a g. CM module.

On the other hand, as $m H_{m}^{1}(M) \neq 0, M$ is not a Buchsbaum module. Moreover, $U_{M}(0)=0$, hence $M / U_{M}(0)$ is not a Buchsbaum module which implies by Theorem 3.1 that M is not a pseudo-Buchsbaum module.

Theorem 3.1 has many consequences. First we note that, the submodule $Q_{R}(\underline{x})$ is also used for studying the monomial conjecture of Hochster which can be described as follows (see [9]): if $\underline{x}=\left(x_{1}, \ldots, x_{r}\right)$ is a system of parameters for $R(r:=\operatorname{dim} R)$, then for every integer $t \geq 0,\left(x_{1} \ldots x_{r}\right)^{t} \notin\left(x_{1}^{t+1}, \ldots, x_{r}{ }^{t+1}\right) R$. This is equivalent to saying that $R \neq Q_{R}(\underline{x})$ for every system of parameters \underline{x} of R, i. e., $l\left(R / Q_{R}(\underline{x})\right) \neq 0$. Hochster proved in [9] that this monomial conjecture is true for high powers of system of parameters. If R is a Buchsbaum ring, R satisfies the monomial conjecture (see [6]). Therefore Theorem 3.1 leads to the following consequence.

Corollary 3.5 If R is a pseudo-Buchsbaum ring then R satisfies the monomial conjecture.

Next, we are interested in the Buchsbaum property of the canonical module of a pseudo-Buchsbaum module.

Corollary 3.6 Let M denote a pseudo-Buchsbaum module which has a canonical module K_{M}. Then K_{M} is a Buchsbaum module.

If R is a pseudo-Buchsbaum ring, then $J_{R}(\underline{y})=J(\bar{R}):=\sum_{i=1}^{d-1}\binom{d-1}{i-1} l\left(H_{\mathrm{m}}^{i}(\bar{R})\right)$, for every s.o.p. $\underline{y}=\left(y_{1}, \ldots, y_{r}\right)$ of $R(r:=\operatorname{dim} R)$, where $\bar{R}=\widehat{R} / U_{\widehat{R}}(0)$. Hence, by Corollary 3.5 we have

$$
e(\underline{y} ; R) \geq 1+J(\bar{R})
$$

for every s.o.p \underline{y} of R. It follows that $e(R) \geq 1+J(\bar{R})$. Combining the results of Yoshida about linearly maximal Buchsbaum modules in [12] with Theorem 3.1 we can easly prove the following consequence.

Corollary 3.7. Let R be a pseudo-Buchsbaum ring which has a canonical module K_{R}. The following conditions are equivalent:
(i) $e(R)=1+J(\bar{R})$.
(ii) K_{R} is a linear maximal Buchsbaum module.

Moreover, we know that, if M is a pseudo-Buchsbaum module, then

$$
J_{M}(\underline{x})=J(\bar{M})
$$

for all s.o.p. \underline{x} of M. Hence

$$
e(\underline{x} ; M) \geq J(\bar{M})
$$

for all s.o.p \underline{x} of M. Therefore $e(M) \geq J(\bar{M})$. In the case the equality holds, we get the following result.

Corollary 3.8. Suppose that $\operatorname{dim} M=\operatorname{dim} R$. Then the following conditions are equivalent:
(i) M is a pseudo-Buchsbaum module and

$$
e(M)=J(\bar{M}) ;
$$

(ii) \bar{M} is a linear maximal Buchsbaum \widehat{R}-module and

$$
\mu_{\widehat{R}}(\bar{M})=\sum_{i=0}^{d-1}\binom{d}{i} l\left(H_{\mathfrak{m}}^{i}(\bar{M})\right)
$$

where $\mu_{\widehat{R}}(\bar{M})$ denotes the minimal number of generators for \bar{M}.

References

1. N.T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J. 125 (1992) 105-114.
2. N. T. Cuong, N.T. Hoa, and N.T.H. Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27 (1999) 259-272.
3. N. T. Cuong and N. T. H. Loan, On pseudo-Buchsbaum modules (2002) (Preprint).
4. N.T. Cuong and N.D. Minh, Lengths of generalized fractions of modules having small polynomial type, Math. Proc. Camb. Phil. Soc. 128 (2000) 269-282.
5. N. T. Cuong and L.T.T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, (2002) (Preprint).
6. S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983) 490-534.
7. S. Goto and K. Yamagshi, The theory of unconditioned strong d-sequence and modules of finite local cohomology, (1986) (Preprint).
8. R. Hartshorne, Property of A-sequence, Bull. Soc. Math. France 4 (1966) 61-66.
9. M. Hochster, Contraced ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973) 25-43.
10. R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985) 323-336.
11. J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Spinger-Verlag, Berlin - Heidelberg - New York, 1986.
12. K. Yoshida, On Linear maximal Buchsbaum modules and the syzygy modules, Commun. Algebra 23 (1995) 1085-1130.
