Vietnam Journal of Mathematics 30:3 (2002) 299-303

Vietnam Journal of MATHEMATICS © NCST 2002

Short Communication

On Pseudo-Buchsbaum Modules

Nguyen Tu Cuong and Nguyen Thi Hong Loan Institute of Mathematics, P. O. Box 631, Bo Ho, Hanoi, Vietnam

Received November 25, 2001

1. Introduction

Throughout this note, R denotes a Noetherian local ring with the maximal ideal m and M a finitely generated R-module with dim $M = d \ge 1$. Let $\underline{x} = (x_1, \ldots, x_d)$ be a system of parameters (s.o.p. for short) of M. Consider the difference between the multiplicity and the length

$$J_M(x) = e(\underline{x}; M) - l(M/Q_M(\underline{x})),$$

where $Q_M(\underline{x}) = \bigcup_{t>0} ((x_1^{t+1}, \ldots, x_d^{t+1})M : x_1^t \ldots x_d^t)$ is a submodule of M. It should be mentioned that $J_M(\underline{x})$ gives a lot of informations on the structure of M. For example, if M is a Cohen-Macaulay module, $Q_M(\underline{x}) = (x_1, \ldots, x_d)M$ by [8], therefore $J_M(\underline{x}) = 0$ for all s.o.p. \underline{x} of M. Furthermore, it is known by [2] that $l(M/Q_M(\underline{x}))$ is just the length of generalized fractions defined in [10]. Therefore by [4], if M is a generalized Cohen-Macaulay module, then sup $J_M(\underline{x}) < \infty$, where \underline{x} runs through all s.o.p. of M. In [2] we also showed that if M is a Buchsbaum module, then $J_M(\underline{x})$ takes constant value for all s.o.p \underline{x} of M. Unfortunately, the converse is not true in general. So in [3], we defined a class of pseudo-Buchsbaum modules M, in which $J_M(\underline{x})$ is a constant for every s.o.p. \underline{x} . The purpose of this short note is to communicate results on pseudo-Buchsbaum modules, whose detailed proofs are given in [3].

2. Pseudo-Buchsbaum Modules

We begin with the following definition.

Definition 2.1. A R-module M is called a pseudo-Buchsbaum module if $J_M(\underline{x})$ takes constant value for every s.o.p. \underline{x} of M. R is called a pseudo-Buchsbaum ring if it is a pseudo-Buchsbaum module as a module over itself.

Recall that for each system of parameters $\underline{x} = (x_1, \ldots, x_d)$ of M and $\underline{n} = (n_1, \ldots, n_d) \in \mathbb{N}^d$, the difference between multiplicities and lengths

$$J_M(\underline{x}(\underline{n})) = n_1 \dots n_d e(\underline{x}; M) - l(M/Q_M(\underline{x}(\underline{n}))),$$

can be considered as a function in \underline{n} , where $\underline{x}(\underline{n}) = (x_1^{n_1}, \ldots, x_d^{n_d})$. Then it is natural to ask whether $J_M(\underline{x}(\underline{n}))$ is a polynomial for \underline{n} large enough $(\underline{n} \gg 0$ for short)? One has shown in [5] that this function is not a polynomial in \underline{n} for $\underline{n} \gg 0$ in general. But Minh and the first author in [4] showed that this function $J_M(\underline{x}(\underline{n}))$ is non-negative and bounded above by a polynomial of degree $\leq d-2$. Moreover, the least degree of all polynomials in \underline{n} bounding above the function $J_M(\underline{x}(\underline{n}))$ is independent of the choice of system of parameters \underline{x} . This numerical invariant is denoted by pf(M). For the convenience, we stipulate that the degree of the zero-polynomial is equal to $-\infty$. Now we recall two notions introduced in [5] as follows: A module M is said to be a *pseudo Cohen-Macaulay* (p.CM for short) or *pseudo generalized Cohen-Macaulay* (p.g.CM for short) if $pf(M) = -\infty$ or $pf(M) \leq 0$, respectively. Then by definition, p.CM modules are pseudo-Buchsbaum and pseudo-Buchsbaum modules are p.g.CM. However, the converse of these statements are not true in general.

From now on, let $0 = \cap N_i$, be a reduced primary decomposition of 0 in M, where N_i is \mathfrak{p}_i -primary. Then we set $U_M(0) = \bigcap_{\dim R/\mathfrak{p}_i=d} N_j, \ \overline{M} = \widehat{M}/U_{\widehat{M}}(0),$

where \widehat{M} is the m-adic completion of M and $J(M) := \sum_{i=1}^{d-1} {d-1 \choose i-1} l(H^i_{\mathfrak{m}}(M))$. Note that this invariant J(M) may be infinity. But one proved in [5] that M is a pseudo Cohen-Macaulay or pseudo generalized Cohen-Macaulay if and only if \overline{M} is a Cohen-Macaulay or generalized Cohen-Macaulay over the m-adic completion \widehat{R} of R, respectively, therefore $J(\overline{M}) < \infty$. Moreover, for pseudo-Buchsbaum modules we have the following

Lemma 2.2. Let M be a pseudo-Buchsbaum module. Then

$$J_M(\underline{x}) = J(\overline{M}),$$

for every s.o.p. \underline{x} of M.

The following results are basic properties on pseudo-Buchsbaum modules.

Proposition 2.3. The following statements are true.

(i) M is a pseudo-Buchsbaum module if and only if so is $M/H^0_m(M)$.

(ii) If M is a pseudo-Buchsbaum module and $\underline{x} = (x_1, \ldots, x_d)$ is reducing s.o.p. on M, then $M/(x_1, \ldots, x_i)M$ is a pseudo-Buchsbaum for $i = 1, \ldots, d$.

Proposition 2.4. M is a pseudo-Buchsbaum module if and only if the m-adic completion \widehat{M} of M is a pseudo-Buchsbaum module over \widehat{R} .

The concept of *polynomial type* $\mathfrak{p}(M)$ introduced in [1] plays an important role for our studying of pseudo-Buchsbaum modules.

300

On Pseudo-Buchsbaum Modules

Proposition 2.5. Let M be a pseudo-Buchsbaum module. Then $\mathfrak{m}H^i_{\mathfrak{m}}(M) = 0$ for $i = \mathfrak{p}(M) + 1, \ldots, d-1$, where $\mathfrak{p}(M)$ is the polynomial type of the module M.

3. The Main Result and Corollaries

The following characterization for pseudo-Buchsbaum modules is the main result of this note.

Theorem 3.1. Keep all notations in the previous section. Then M is a pseudo-Buchsbaum module if and only if \overline{M} is a Buchsbaum module over the completion \widehat{R} .

In order to prove Theorem 3.1 we had to use a characterization of p.g.CM module in [5], Theorem 2.3 about the monomial property of a u.s.d-sequence in [7] and the following lemmas.

Lemma 3.2. For every s.o.p. $\underline{x} = (x_1, \ldots, x_d)$ on M,

$$J_M(\underline{x}) \le \sum_{i=1}^{d-1} \binom{d-1}{i-1} l(H^i_{\mathfrak{m}}(M)).$$

Lemma 3.3. The following statements are equivalent:

(i) $M/H_m^0(M)$ is a Buchsbaum module.

(ii) M is genralized Cohen-Macaulay and pseudo-Buchsbaum.

Lemma 3.4. If M is a pseudo generalized Cohen-Macaulay module, then $J_M(\underline{x}(\underline{n})) = J(\overline{M})$ for $n \gg 0$ and every s.o.p. \underline{x} of M.

By Theorem 3.1, we see that, the class of pseudo-Buchsbaum modules stricly contains the class of Buchsbaum modules. Moreover, there exists a pseudo-Buchsbaum module M which does not need to be a g.CM-module. On the other hand, there exist g.CM modules which are not pseudo-Buchsbaum modules. The following examples illustrate this.

Example. (1) Let k be a field and X_1, X_2, X_3, X_4 indeterminates. Take

$$A := k[[X_1, \dots, X_4]] / (X_1, X_2) \cap (X_3, X_4) \cap (X_1^2, X_2, X_3)$$

It is easy to see that, A is a pseudo-Buchsbaum ring $(J_A(\underline{x}) = 1$ for every s.o.p. \underline{x} of A) but A is not a g.CM ring.

(2) Let k be a field and X_1, \ldots, X_n indeterminates $(n \ge 2)$. Set $R = k[[X_1, \ldots, X_n]]$ and $M = (X_1^2, X_2, \ldots, X_n)R$. We have the exact sequence

 $0 \to M \to R \to R/(X_1^2, X_2, \dots, X_n)R \to 0.$

Since R is a CM ring and from exact sequence above we have $H^i_{\mathfrak{m}}(M) = 0$, for $i \neq 1, n$ and $H^1_{\mathfrak{m}}(M) \cong R/(X_1^2, X_2, \ldots, X_n)R$. Therefore M is a g. CM module.

On the other hand, as $mH_m^1(M) \neq 0$, M is not a Buchsbaum module. Moreover, $U_M(0) = 0$, hence $M/U_M(0)$ is not a Buchsbaum module which implies by Theorem 3.1 that M is not a pseudo-Buchsbaum module.

Theorem 3.1 has many consequences. First we note that, the submodule $Q_R(\underline{x})$ is also used for studying the monomial conjecture of Hochster which can be described as follows (see [9]): if $\underline{x} = (x_1, \ldots, x_r)$ is a system of parameters for $R(r := \dim R)$, then for every integer $t \ge 0$, $(x_1 \ldots x_r)^t \notin (x_1^{t+1}, \ldots, x_r^{t+1})R$. This is equivalent to saying that $R \ne Q_R(\underline{x})$ for every system of parameters \underline{x} of R, i. e., $l(R/Q_R(\underline{x})) \ne 0$. Hochster proved in [9] that this monomial conjecture is true for high powers of system of parameters. If R is a Buchsbaum ring, R satisfies the monomial conjecture (see [6]). Therefore Theorem 3.1 leads to the following consequence.

Corollary 3.5 If R is a pseudo-Buchsbaum ring then R satisfies the monomial conjecture.

Next, we are interested in the Buchsbaum property of the canonical module of a pseudo-Buchsbaum module.

Corollary 3.6 Let M denote a pseudo-Buchsbaum module which has a canonical module K_M . Then K_M is a Buchsbaum module.

If R is a pseudo-Buchsbaum ring, then $J_R(\underline{y}) = J(\overline{R}) := \sum_{i=1}^{d-1} {d-1 \choose i-1} l(H_m^i(\overline{R}))$, for every s.o.p. $\underline{y} = (y_1, \ldots, y_r)$ of R ($r := \dim R$), where $\overline{R} = \widehat{R}/U_{\widehat{R}}(0)$. Hence, by Corollary 3.5 we have

$$e(y;R) \ge 1 + J(R)$$

for every s.o.p y of R. It follows that $e(R) \ge 1 + J(\overline{R})$. Combining the results of Yoshida about linearly maximal Buchsbaum modules in [12] with Theorem 3.1 we can easly prove the following consequence.

Corollary 3.7. Let R be a pseudo-Buchsbaum ring which has a canonical module K_R . The following conditions are equivalent:

(i) $e(R) = 1 + J(\overline{R})$.

(ii) K_R is a linear maximal Buchsbaum module.

Moreover, we know that, if M is a pseudo-Buchsbaum module, then

$$J_M(\underline{x}) = J(\overline{M})$$

for all s.o.p. \underline{x} of M. Hence

$$e(\underline{x};M) \geq J(\overline{M}).$$

for all s.o.p \underline{x} of M. Therefore $e(M) \geq J(\overline{M})$. In the case the equality holds, we get the following result.

Corollary 3.8. Suppose that $\dim M = \dim R$. Then the following conditions are equivalent:

302

On Pseudo-Buchsbaum Modules

(i) M is a pseudo-Buchsbaum module and

$$e(M) = J(\overline{M});$$

(ii) \overline{M} is a linear maximal Buchsbaum \widehat{R} -module and

$$\mu_{\widehat{R}}(\overline{M}) = \sum_{i=0}^{d-1} \binom{d}{i} l(H_{\mathfrak{m}}^{i}(\overline{M})),$$

where $\mu_{\widehat{B}}(\overline{M})$ denotes the minimal number of generators for \overline{M} .

References

- N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, *Nagoya Math. J.* 125 (1992) 105-114.
- N. T. Cuong, N. T. Hoa, and N. T. H. Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27 (1999) 259-272.
- 3. N. T. Cuong and N. T. H. Loan, On pseudo-Buchsbaum modules (2002) (Preprint).
- N. T. Cuong and N. D. Minh, Lengths of generalized fractions of modules having small polynomial type, Math. Proc. Camb. Phil. Soc. 128 (2000) 269-282.
- 5. N. T. Cuong and L. T. T. Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, (2002) (Preprint).
- S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983) 490-534.
- 7. S. Goto and K. Yamagshi, The theory of unconditioned strong *d*-sequence and modules of finite local cohomology, (1986) (Preprint).
- 8. R. Hartshorne, Property of A-sequence, Bull. Soc. Math. France 4 (1966) 61-66.
- M. Hochster, Contraced ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973) 25-43.
- R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985) 323-336.
- 11. J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Spinger-Verlag, Berlin - Heidelberg - New York, 1986.
- K. Yoshida, On Linear maximal Buchsbaum modules and the syzygy modules, Commun. Algebra 23 (1995) 1085-1130.