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Abstract. In this paper we consider two stochastic models of games which include
martingales in the limit and games fairer with time. It turns out that there is a close
relationship between them. This remark together with a stopping time technique allows
us to obtain some limit theorems of Doob’s type for these models.

1. Notations and Statements of the Results

Throughout this note we are dealing with a complete probability space (€, A4, P)
and a stochastic basis (A,), i.e., an increasing sequence of sub o-algebras of A
with A, T A. By T we denote the set of all bounded stopping times w.r.t. (Ay).
Then equipped with the usual order “<”, given by ¢ < 7 iff o{w) < 7(w), a.s.,
T becomes a directed set.

Thus one can regard the set N of all positive integers as a cofinal subset
of T. From now on instead of the usual set N, we shall look at the set T" of
all bounded stopping times and consider only the sequences (7,,) of T' for which
each 7, satisfies:

n <7, <min{k € N, P({Tny1 = k}) > 0}.

To avoid any confusion we will denote by {7,} the set of all elements of (7,,)
and by U we always mean a cofinal subset of N. Thus foranyp € N and 7 €T
with p < 7 we can use the following notations:

Up)={keU, k> p)

* This work was partly supported by the National Scientific Council of Vietnam.
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and
Ulp,7)={keU, p<k<7}

Now let L'(A) denote the Banach space of all (equivalence classes of) A-
measurable integrable random variables (r.v.’s) X : Q@ — R with

E(|X)) =/Q|X]dP< .

Unless otherwise stated, we shall consider in the sequel only the sequences
(Xn) in L*(A) which are assumed to be adapted to (Ay), i.e., each Xp, is An-
measurable. Such a sequence (X,) would be regarded sometimes as a (stochas-
tic) game.

For other notations we refer to [2,4]. Here the following stochastic models
of games are the first important starting point of our consideration.

Definition 1.1. A sequence (X,) is said to be:
a) a martingale in the limit, if

lim sup |[E™(Xm) — Xn| =0, a.s.,
n m>n

where given 7 € T and X € L'(A), E™(X) denotes the A,-conditional erpecta-
tion of X (cf. 8]).
b) a mil, if for every € > 0O there exists p € N such that for all n € N(p) we
have

P( sup |EY(X,)— X4 >€) <e.

gEN(pn)

c) a game which becomes fairer with time (or briefly, a game fairer with time),
if for every € > 0 there exists p € N such that for any n € N(p) we have

sup  P(|EY(X,) — Xq| >€) <e.
gE€N(p,n)

Martingales in the limit were first introduced by Mucci [7] who proved that
every L1- bounded real-valued martingale in the limit converges a.s. Then an im-
mediate natural question arises if Mucci’s result still holds for L! - bounded mar-
tingales in the limit, taking values in a Banach space with the Radon—Nykodym
property? During about the next ten years, one had found a series of positive
answers but for only particular cases. Finally, Talagrand [9] positively solved not
only this problem but also for the next class of mils, which was also pointed out
by him to be essentially more general than that involving the question. How-
ever the limit problem is still open for the third class of games fairer with time,
earlier introduced by Blake [1] and then considered by Mucci [6] since it seems
to be too large. An attempt to improving the Blake’s result was later made
by Luu (3], who brought out for the first time a close relationship between mils
and games fairer with time which can be formulated that every game fairer with
time contains a subsequence that ¢s a mil. This simple remark together with
the Talagrand’s result [9, Theorem 4] allowed us to conclude in [3] that every
L'- bounded real-valued game fairer with time converges in probability. But in
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many situations, a game would converge a.s. or in probability, resp., although it
is not a mil or a game fairer with time, resp. This led us to consider in (2,4] the
following two reasonable stochastic models in which stopping times are taken
into account.

Definition 1.2. A sequence (Xn) is said to be:
a) a {m}-mil, if for every € > 0 there ezists p € N such that for alln € N(p)
we have
P( sup |EY(Xr,) — Xq| > 6) <e.
9EN(p,7x)
b) a game which becomes fairer with a sequence (7,) of stopping times (or briefly,
a {T,}-game), if for every € > 0 there exists p € N such that for any n € N(p)
we have
sup P‘(|Eq(XTn) X Mo s) <e. (1)
qEN(p,™n)

Tt is clear that in the usual case, when each 7, = n, these models are reduced
to the last two classes of games given in the previous definition.

In reality, the notions of {7,}-mils and {7,}-games have been recently in-
troduced in ([2], Definition 0.2) and ([4], Definition 2.3 and Remark 3.2), resp.,
where the author has proved that every real-valued {7,}-mil (Xn) with

liminf E(|Xr,[) < oo (2)

converges a.s. However for a {7, }-game (X,) together with (2), the author had
to require another additional assumption to get the convergence in probability
of (X,). The reason is one could not apply a procedure of proof like it was
done in [4] for games fairer with time. The main aim of this note is to continue
[2,4] overcoming the difficulties we have met before to obtain the convergence
in probability of a {7, }-game satisfying only (2).

2. Main Results

First, we present the following important property of {7,}-games which is of
particular interest.

Lemma 2.1. Let (X,,) be a {r.}-game satisfying (2). Suppose that it contains
a subsequence which converges to zero in probability. Then so does (Xn).

Proof. To prove the lemma, let (X,) be a {7, }-game satisfying (2) which contains
a subsequence, say (Xy, u € U) for some cofinal subset U of N which converges
to zero in probability. Suppose on the contrary that (X,) does not converge to
zero in probability. Then there exists some positive real number a > 0 such that

lim sup P([an > %) > a. (3)

We conclude that
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For every 0 < € < a/4 and n; € N there exists ny € N(n; + 1) such that
for each A € A,, with P(A) < a/4 and n € N(n2) one can find B € A, with
BnA=¢, P(B) < ¢ and such that

a2
[ xelipz % (4)
B 8
To see the conclusion, let 0 < € < a/4 and n; € N be given. Then by (1)
and (3) there exists p > 7, so large that for every n > p we have
a €
P(|E?(X-,) - X,| > g) <z (5)

and 5
: it 24
P(C)>a with C={1X|> 5}

since (X,) is a {7,}-game and (X,) does not converge to zero in probability.
Thus if we put

6a 6a
1 = 1 = — —_— 1
C’l—{X,,>5} and Cj { X,,>5}\C1
then it is evident that
= Chw el Uvith b€l Rey=1un

On the other hand, as the subsequence (X,, u € U) converges to zero in
probability there exists u; € U(p) such that

€ . _ 3a
P(D)<z with D= {|Xm| > ?}. (6)

Now let define np = u; + 1. We shall show that ns satisfies all the require-
ments of the conclusion. For the purpose let 4 € A, with P(A) < a/4 and
n € N{ng) be given. By (5) we get

P(G) < % with G = {IEP(XTﬂ) 55 g} )
Further, let define
Ci=Ci\(GuA);, C}=C3\(GUA)
and C% = C? U CZ. 1t is easily seen that
C?NC2=¢ and C?=C\(GUA).

Then by a simple calculation we have

P(C?) > % (8)
Similarly, by (5) we also have
P(H) < g with H = {|E"1(X,n) s ol g} (9)

Finally, take
D'=DUH; B, =CinD'; By=C:nD!



Stochastic Models of Games Which Become Fuirer with Stopping Time 263

and
B = B; U Bs.

It is easily checked that B € Ay, with
P(B)< P(D') <e.

We shall show that constructed in such a way the set B satisfies (4), proving
the conclusion.
Indeed, since C? is contained in the outside of G, by (7) on C? we have

|EP(X,) — Xp| < %

Equivalently, a =
Xp— % < EP(Xr,) < Xp+ 5

Thus by the definition of C} and C3 we get

X, dP = / EP(X,,)dP > aP(C?), (10)
c? c?
since on C? we have
a_6a a
P SX, 25— 2=
EP(X:) 2 Xp 5> T
and
—/ X, dP = —/ E?(X,,)dP > aP(C3), (11)
c2 c2
since on C2 the following inequality holds
_EP(X.) > X e LA
™= i 5 5

Similarly, let define
D}=C}\D'=C{\(DUH)

and
D2=C2\D'=C;\(DVH).
By (6) and (9) on D} U D we get the following inverse inequalities
Xo]< 22 and Xu—2<EM(X,) S Xu+ -
5 5 5
But note that D?, D} € A,,. It follows that

4
[ Xedp= [ Eo(x.)ap < TROD < da
D? D? 5

=PC), (12

since on D? we have

a 3a a
Ul < = —_— -
E (XT")_Xul+5<5+5
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and
4a

- [ XnaP=- [ Bu(t,)ip < LP0Y < TPOD,  03)
D2 D2 5 5

since on D2 one sees
a _3a a 4da
—EM(X, )< — ol &0
) S iion Bl elso o 6
But note that By N D} = ¢ and Cf = B; U D? then by (10) and (12), it
follows that

/ |XTn|dP2/ XTnsz/ XrndP—/ X,.dP
B, B, C? Df

4aP(C}) _ aP(C})

(14)

Similarly, as B, N D% = ¢ and CZ = B, U D%, it follows from (11) and (13)
that

X, |dP >~ | X..dP= —(/ X, dP — XT"dP)
B B, C'22 Dg
= [ X,dP- / X, dP
D2 cz
2 2
2 _4aP5(C’2) +aP(CE) = ancz).

This with (14) gives

/ | X |dP=/ 1 X |dp+/ X, |dP > a(P(C’12)+P(C’22)) _ aP(C’Z).
: B B, 5 5

Therefore substituting (8) in the right hand side we obtain

2
[ 1xelap 2 %
B 8

It proves (4) and the conclusion.
Returning to the proof of the lemma, one can apply the conclusion to con-
struct by induction a strictly increasing subsequence (n,) of N with the following

property: :
Whenever A € A, with P(4) < a/4 and n € N(kp41) there exists B €

Ar ., With BNA=¢, P(B) < a.2=(®*1) and such that

2
/ | XrudP > =
: g

Thus given an arbitrarily big constant M > 0, there exists p € N such that

(p—1)a®
8

> M.
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We shall construct next by finite induction with j < p disjoint sets Bj € Ar,
: J

with B; = ¢, P(B;) < a.27U*Y and

a2

X, |dP 2 —=.
Therefore, by taking B = UBj we have
i<p

LiTE 5
/ |1 X, |dP > (—p—gl)i > M,
B

which implies that
lim E(lX.,-nl) = 0.

It contradicts the assumption (2), proving the lemma. ]

Further, as the main result of this note we shall apply the previous lemma
together with Theorem 2.5 [5] to obtain the following statement.

Theorem 2.2. Let (Xy) be a {mn}-game which satisfies (2). Then (Xn) con-
verges in probability to some X € LM A).

Proof. Let (X,,) be a {7, }-game satisfying (2). Then by passing to a subsequence
of (7,), if necessary one can suppose directly that the sequence (Xr,) is L-
bounded. We shall show first that there exists a cofinal subset U of N such that
(X,) becomes a {7,}-mil relative to U taken in the sense of Definition 1.3 [5],
i.e., for every € > 0 there exists p € U such that for any n > p we have

P( sup  |E(Xr,) — Xq| > e) <e. (15)
q€U(p,n)

Indeed, since (Xp) is a {7n}-game, by (1) one can find a strictly increasing
sequence (kn) of N such that for any m,n € N with kyn < n we have

P(]EkM(XTﬂ) — X, | > 2-’") <o m, (16)

Further, let define U = {kn, n € N }. We claim that constructed in such a way
(Xn) becomes a {7, }-mil relative to U. To see this let € > 0 be given. Clearly
there exists mg € N such that 9-mo+1l < ¢, This with (16) yields that for every
n > kmo by setting p = kmg € U and

q(n) = max{m € N, kg < Tm}
we have

P EY(X.)— X = EF(X.) = Xkm
(g G-l =P( e 15060) = Xeul >

g(n)
< P( sup lEkm (XTn) _ ka| > 2—m) < Z 9-m < 2_m0+1 e

meN (mo,q(n)) m=mg
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It proves (15), hence the claim. Here is the best place to inform that such
a {7n}-mil (X,) relative to U satisfies all the requirements of Theorem 2.5 [5]
which guarantees that the subsequence (X,, u € U) converges a.s. to some
X € L'(A). Thus if we define finally the sequence (P,) by

Po=Xn—E™X) or X,=E"(X)+P,, (17)
n € N then (P,) is also a {7, }-game satisfying
liminf E(|Pr,|) < liminf B(|Xx,|) + E(1X[) < 0o

and (P,) contains the subsequence (P, u € U) converging to zero a.s. since by
Levy’s Theorem the regular martingale (E™ (X)), hence its subsequence (E*(X),
u € U), converges a.s. just to X as (Xu, u€U). ’

Therefore, by the previous lemma, (P,) converges to zero in probability.
This with the decomposition (17) and Levy’s Theorem proves that the {r,}-
game (X,) converges to X in probability as (E™(X)). It completes the proof.

]

It is clear that (2) follows immediately from the stronger assumption that
(X:,) is uniformly integrable. The main sense of this remark is that under the
stronger hypothese we get the following converse conclusion:

Proposition 2.3. Let (X,) be a game with (X,,) being uniformly integrable
and (X,) converging in probability. Suppose that either there exists somed € N
such that each 7, satisfies

Card {k: € N, P({‘Tn = k}) > 0} <d,

or each T, is independent of the increments
{(Xm — Xn), me N(n)}.

Then (X,,) must be a {7,}-game. Moreover the statement fails true if we remove
the above two additional assumptions simultaneously.

Proof. To see the first part of the proposition, let (X,) be a game with (X, )
being uniformly integrable. Suppose that (X,) convetges in probability to some
r.v. X. For the first case, assume in addition that there exists d € N such that
for each n € N we have

Card {k € N, P({r = k}) >0} <d.

Then this with the stochastic convergence of (X,,) to X, implies that for a given
€ > 0 there exists p € N such that

sup P(| X, — X| > ) < 2
n2p

Thus for all n > p one obtains
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P(|X,, — X|>€) < ZP({Tn =k} n{|Xe—X|> E})

k2p

< Card {k >p, P({m = k}) > 0}.i1;pP(|Xk - X|>¢)
>p

<d.- =g,

ul™

since T, > P.

1t means that the sequence (Xr,) converges also to X in probability. But
(X,.) was assumed to be uniformly integrable, it follows that (X;,) converges
to X in L! as well.

This with Chebyshev’s inequality and Levy’s Theorem guarantees that (X,)
is a {7, }-game since for any € >0 and p,n € N with p < n we have

P(IEP(X-,—,,) - Xp| > 5) < P(lEp(XTﬂ) _ EP(X)| > g)
(031 §) A= 51> 5)

It proves the proposition for the first case.

To see the proposition in the second situation, where each 7, is independent
of the increments {(Xm —Xn), m2 n}, as in the first case it is sufficient to
show that (X, ) converges also to X in probability.

To see this, let £ > 0, p,n € N be given with p < n. Since 75, is independent
of {(Xm — Xn), m > n} it follows that 7, is independent of (Xn — X) as well.

Hence we have

P(IX,, — X|>€) < Y P({Ta =m} N {|Xm - X| > e})
m=n
< 3 P(rn =m).P(|Xm — X| > €)
m2p
= sup P(|Xm — X|>€),
m2p
since 7, = 7.

But by the common assumption, (X,) converges to X in probability, then
so does (Xr,). This with the last argument, used in the first case implies that
(X,) should be a {r,}-game which completes the proof of the second situation
of the proposition.

To construct a counter-example mentioned in the second part of the propo-
sition, let (R, A, P) be the usual Lebesgue probability space on [0,1).

For each m € N, let Qm, be the partition of [0,1), given by

;M .
= {[£522). 1252m).

m 'm
Further, set ag = 0 and a¢m = ap-1+m, M€ N. Then for every n € N, there
is a unique pair (m, j) € N2 such that 1 <j<mand n=an-1+7J.
Thus we can define |
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It is clear that 0 < X, <1 and (X,) converges to zero in probability.
Now we are looking at the sequence (7;,) of bounded stopping times given by

n

T — Z(an_l +])I[J__1 L)'

],_1 m ' m

It is clear that
n<an-1 <7 <8 < Tnt1, n € N.

Moreover, each X,,n = 1. Consequently, for any ¢g,n € N with 2 < ¢ < 7, we
have

1

P(|E‘1(XTn) — X,| > —) =1-P(X; #0) > 5.
Hence (X,) cannot be a {7,}-game. It completes the construction and the
proof of the proposition. n

Finally, to convince the readers that the last two stochastic models are truely
more realistic we propose the following simple remark.

Remark 1. There exists a nonnegative L!-bounded game (X, ) which is not fairer
with time. But it is a {7 }-mil with each X, = 0. Hence, it converges to zero,
a.s.

Indeed, first we take Q = [0,1) and ag = 0. For n > 1, let define

= 22_(1“) and A,=0-— ([ak_l,ak), k< n)

Let A be the smallest o-algebra generated by L#An and P the usual Lebesgue

probability measure on [0, 1), restricted to .A. On the probability space ([0, 1),.4
P) with its stochastic basis (A,) we shall construct the desired example (Xn)
as follows

Xn= 2n+1-I[an_1,an)a n€ N,

where I4 denotes the characteristic function of A € A. It is evident that each
Xn > 0 and E(X,) = 1. However, note that for any p,n € N with p < n we
have

EP(Xp) = (1 - ap) g, 1)
Then ]
{|B7(Xa) = X,| > 5} = lap-1,1).
This implies
P(]EP(X ) - X,| > l) =L (PR
n Y4 2 P 9

It shows that (X, ) cannot be a game fairer with time.

On the other hand, if we look at the sequence (7,) of bounded stopping times
given by
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() = { n, t € [an,1)

n-+1, elsewhere

then it is clear that for every n € N we have
n< 7, <n+1=min {k € N, P({Tn41 =k}) > 0}.

Moreover, each X,, = 0. In this case, the statement that (Xy) is a {7n}-mil,
is equivalent to the fact that (X,) converges to zero a.s. But the fact is trivial.
The construction, hence the proof of the remark is complete.

For another kind of such examples, constructed on a purely nonatomic prob-
ability space, the interested reader is referred to ([2, Example 1]).
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