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Abstract. In this paper we consider two stocha.stic models of games which include

martingales in the Iimit and games fairer with time. It turns out that there is a close

relationship between them. This remark together with a stopping time technique allows

us to obtain some limit theorems of Doob's type for these models.

1. Notations and Statements of the Results

Throughout this note we are dealing with a complete probability space (O, "4, P)
and a stochastic basis (.4.), i.e., an increasing sequence of sub o-algebras of ;4
with "4,, t .A. By ? we denote the set of all bounded stopping times w.r.t. (",4'o).
Then equipped with the usual order "(", given by o ( r ifr. o(u) ( r(t.r), a.s.,
? becomes a directed set.

Thus one can regard the set N of all positive integers as a cofinal subset
of ?. Flom now on instead of the usual set N, we shall look at the set ? of
all bounded stopping times and consider only the sequences (r,.) of ? for which
each rn satisfies:

n 1rn (  min { lc  e .nf ,  P({ r^+t :  h})  > 0} .

To avoid any confusion we will denote by {r'} the set of all elements of (r,)
and by U we always mean a cofinal subset of N. Thus for any p e N and, r € T
with p ( r we can use the following notations:

U ( p ) :  { k  e U ,  k >  p }

* This work was partly supported by the National Scientific Council of Vietnam.
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and
U ( p , r ) : { / c € U , p 1 k < r } .

Now let Lt(A) denote the Banach space of all (equivalence classes of) "4-
measurable integrable random variables (r.v.'s) X : O ---+ lR with

Unless otherwise stated, we shall consider in the sequel only the sequences
(X,) in Lt(A) which are assumed to be adapted to ("4,), i.e., each Xn is An-
measurable. Such a sequence (Xr) would be regarded sometimes as a (stochas-
tic) game.

For other notations we refer to [2,4]. Here the following stochastic models
of games are the first important starting point of our consideration.

Definition l.l. A sequence (X") i,s said to be:
a) a martingale in the limi,t, if

tt;r. 
;!o,lP"(x*) 

- Y*l:0, o.,s.,

where g'iuen r eT and X e LL(A), E"(X) denotes the A,-condit'ional expecta-
tion of x (cl. lal).
b) a mil, iJ for euery e ) 0 there erists p e N such, that for all n e N(p) we
haue

P( sup lre1x,) - Xrl > r) < r.
qeN(p,n)

c) a game which becomes fairer tuith time (or briefl,y, a ganxe fairer utith ti,me),
i f  for  euery e)0 there edstsp€ N suchthat for  anyne N(pt)  wehaue

sup P(lEs(X") - Xql> u) < r.
qeN(P,n)

Martingales in the limit were first introduced by Mucci [7] who proved that
euery Lr - bounded real-ualued martingale in the tirnit conuerges o.s. Then an im-
mediate natural question arises if Mucci's result still holds for .Ll - bounded mar-
tingales in the limit, taking values in a Banach space with the Radon-Nykodym
property? During about the next ten years, one had found a series of positive
answers but for only particular cases. Finally, Talagrand [9] positively solved not
only this problem but also for the next class of mils, which was also pointed out
by him to be essentially more general than that involving the question. How-
ever the limit problem is still open for the third class of games fairer with time,
earlier introduced by Blake [1] and then considered by Mucci [6] since it seems
to be too large. An attempt to improving the Blake's result was later made
by Luu [3], who brought out for the first time a close relationship between mils
and games fairer with time which can be formulated that euery game fairer uith
time contai,ns a subsequence that is a m'il. This simple remark together with
the Talagrand's result [9, Theorem 4] allowed us to conclude in [3] that euery
Lr-bounded real-aalued game fairer with ti,me conuerges in probabili,ty. But in

t

E( lx l )  :  I  l x ldP <oo.
J N
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many situations, a game would converge a.s. or in probability, resp., although it

is not a mil or a game fairer with time, resp. This led us to consider in [2,4] the

following two reasonable stochastic models in which stopping times are taken

into account.

Definition 1.2. A sequence (X.) i's said to be:

a)  a{r* } -mi) ,  i f  for  eaery e> 0 there et ' is tspe N suchthat for  a l lne N(p)

we haae
P( sup lnn6) -  xol> ' )  < ' .

\  qe N(p' r - )

b) a game wh'ich becomes fa'irer uith. a seEuence (r^) of stopp,ing times (or briefl,y,

a {rn}-game), i,f for euery e> 0 there existsp€ N suchthat for any ne N(7t)

we haue
sup e(lv1x,-1 - xol, ') . '. (1)

q€N(P'r^)  \  '

It is clear that in the usual case, when eachrn: n, these models are reduced

to the last two classes of games given in the previous definition.

In reality, the notions of {r,}-mils and {r,}-games have been recently in-

troduced in ([2], Definit ion 0.2) and ([4], Definit ion 2.3 and Remark 3.2), resp.,

where the author has proved that euery real-ualued {r*)-mil (X^) unth

I im in f  E ( lX "^ l )  . *  ( 2 )

conaerges o.s. However for a {r,"}-game (X,) togetner with (2), the author haC

to require another additional assumption to get the convergence in probability

of (X.). The reason is one could not apply a procedure of proof Iike it was

done in [4] for games fairer with time. The main aim of this note is to continue

[2,4] overcoming the difrculties we have met before to obtain the convergence

in probability of a {r'}-game satisfying only (2).

2. Main Results

First, we present the following important property of {r,}-games which is of

particular interest.

Lernma 2.L. Let (x^) be a {rn}-game sati.sfging (2). suppose that it contains

a subsequence which conuerges to zero in probabili'ty. Then so does (Xn)'

Proof. "Io prove the lemma, let (X,) be a {r,}-game satisfying (2) which contains

a subsequence, say (Xu, u € t/) for some cofinal subset [/ of N which converges

to zero in probability. Suppose on the contrary that (X') does not converge to

zero in probability. Then there exists some positive real number o ) 0 such that

r imsup P( lx^ l t  ?)  t  
" .

We conclude that

(3)
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For every 0 < e < af4 andrzr € lI there exists n2 e N(n1* 1) such that
for each Ae A,^, with P(A) 1af 4and.ne N(n2) one can find B € "4"_, with
B n A: 0, P(B) ( e and such that

I"l*-ld', >+ (4)

To see the conclusion, let 0 < e < af4and nr € N be given. Then by (1)
and (3) there exists p) rn, so large that for every n ) p we have

P( lE , (x " - ) -xe l>?) . ;  (b )

and
p(C) >a with C: { lxr l t  ?}

since (X,") is a {r,}-game and (X,) does not converge to zero in probability.
Thus if we put

c l :  { x , t  ? }  a n d  c ; :  { - x p > f f } f " l
then it is evident that

c  :  C lvC l  w i th  c lnc | :6 .
On the other hand, as the subsequence (Xu, u € [/) converges to zero in

probability there exists q e UUt) such that

p@) <;  wi th  n :  { lx . , l  t  3} (6)

Now let define n2 : ur I 1. We shall show that n2 satisfies all the require-
ments of the conclusion. For the purpose let A € "4"*, with P(A) < al4 and
n e N(n2) be given. BV (5) we get

P(c) < ! witn c: {lpr(x,*) 
- xol, }

Fbrther, let define

C? : CI \ (G u,4); C3 : Cl \ (G u,4)
and C2 : C? v Cl. tt is easily seen that

c ? n c |  :  O  a n d  C 2  : C \ ( c u , 4 ) .

Then by a simple calculation we have

PQ\>T
Similarly, bV 6) we also have

P(H) <t witn s : {1n",(x,^) -n,l t f}.
Finally take

D r  :  D t ) H i  B r : C ? n D r ;  B z : C Z n D r

(7)

(8)

(e)
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a n d  
B : B t \ ) B z '

It is easilY checked that B € /', with

P ( B ) S P ( D r ) < e .

we shall show that constructed in such a way the set B satisfies (4), proving

the conclusion.-- 
I;;;d,;; e C2 iscontained in the outside of G, bv (7) on C2 we have

lw(x,^) - xrl3 ?.
Equivalently,

x r -3<Eo(x , ^ )sxo+? .

Thus by the definition of Cl and Cl we get

t x"*dP : I n'1x,^)dP > aP(c2r), (10)
Jc? Jc?

since on Cf we have

Ep(x ,^ )2xp- t rT-3 :o

a n d r r
- l x , * d P : - l - w ( x , ^ ) d P > a P ( c | ) ,  ( 1 1 )

Jct rc;

since on C| the following inequality holds

-E,(x,*) 2 -xp - 3, T - | : ".
Similarly, let define

D ? : C ? \ D t  = c ? \ ( D u H )

and 
ol = cl\ D' : c; \ (D u rJ)'

BV (6) and (9) on DIU Dl we get the following inverse inequalities

lx, , l  s ? and xu,-?="" '(x"*)s x-+?'

But note that Df , Dl e A,'' It follows that

I t,*a, = [^"Eu'(x,*)dP s!rp71sfepi1, (12)
Jo? JD?

since on Df we have 
a za a 4a

E " ' ( X " * ) < X u , + E . T + b : T
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- [^.r,^or: - [^"8u,(x,^)ap slep3l s!epg1, (13)
JD? JDZ

since on D! one sees

-Eu,(x,*) . -xut* i = +. Z : +
But note that ^B1 n D? : $ and Cl : Br U D2, then by (10) and (12), it

follows that

t lx,*ldP> [ x,^ae: I x,^dP- [ x,*d,p
JBr  JBt  JC? JD?

2aP(cl)-ry:"'L:?',. (14)

Similar ly,  as Bzf lD3:6 andC|:  Bzt)D!,  i t  fo l lows from (11) dnd (13)
that

f u"r*,-ror. 
- 

|""x,^d,p 
: -( 

|",x,^ap 
- 

lo"x,^an)
= [ x"^dp- [ x,.0,

J oZ JcZ

. -aaPlcil + ap(C|): o'L:3, .

This with (14) gives

r  r  | . _ _  _ > a ( P ( C ? ) + P ( C i l ) _ a p ( C 2 ) .
I lx"*ldP: I ix"^ldP+ I lx"*ldP

J B  J B t  J B z  5  5

Therefore substituting (8) in the right hand side we obtain

|  . - -  a 2

J"lx"^lae > 1'
It proves (4) and the conclusion.
Returning to the proof of the lemma, one can apply the conclusion to con-

struct by induction a strictly increasing subsequence (no) of N with the following
property:

Whenever A e A,nn with P(,4) < al4 and n € N(ke+l) there exists B €
A,*o*, with B i A: O, P(B) I a.2-@+r1 and such that

I v,^to" >*'
J B  

-  
8

Thus given an arbitrarily big constant M ) 0, there exists p € N such that
/  a \  I

\ p__L )a_  >  M .
8 -
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We shall construct next by finite induction with j < p disjoint sets Bx' t Atxi

with ,B1 -- 6, P(B) < a'2-U+r) and

r a 2

Ju lx"-lae > U'

Therefore, by taking B : U Bi we have
j <p

tx,*ldP >-@-!a > m,

I*n E(lx"-l) : *'

It contradicts the assumption (2), proving the lemma' r

F\rrther, as the main result of this note we shall apply the previous Iemma

together with Theorem 2'5 [5] to obtain the following statement'

T h e o r e m 2 . 2 . L e t \ X , ) b e a { r n ) . - g a m e w h i c h s a t i s f i ' e s ( 2 ) ' T h e n ( X n ) c o n '
aerges in probability to some X e Lt (A) '

Proof. Let(X') be a {r,o}-game satisfying (2)' Then by passing to a subsequence

of (r,o), if necessary ;;; ;" 
"'ppo'" 

ai'e"ity that the s€quence (X"-) is 'L1-

bounded. we shall ,t o* nrrt tnaf tnere exists a cofinal subset u of N such that

iC;*; "" " 1r*7]ii 'emtt'" tu (I taken in the sense of Def'nition 1'3 [5]'

;.;'f"t every E > 0 tiere'exists p € [/ such that for any n' 2 p we have

r(,.;fI"_, lnn(x,^)- &l >') . ' '

L
which implies that

(1 5)

Indeed, since (X,") is a {r*}-game, by (1) 9ne can find a strictly increasing

."q,r"rr"" 1il'; of N such that for any rntn' € N with k* ( n we have

P(lEk^ 6) - xt *l t 2--) < 2-^ . (16)

F\rrther, let define (J : {lrn, n e N}'-We claim that constructed in such a way

i;;F;", , ir,) *it r"turi.," to U. to see this Iet e ) 0 be given. Clearlv

there exists rns € N ,,r"tt 'nu, 2-mo*r < e. This with (16) yields that for' every

n ) k*o by setting P : k*o € [/ and

q(n) : max{rn € N, /cq S r^}

we have

p( -sup .lnn(x,*) 
- xnl> u) : P(*r,?)f,or,, lEk^(x'^)- xn-l t ')

\  qe U(P,r-)  
'

q(")

lnr*(X,^)  
-  Xx^lr  r -^)  s D ,-*  .2-mo*r <-5'

< P( sup
\ rneN(zno,q(rr))
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It proves (15), hence the claim. Here is the best place to inform that such
a_{r",}-mil (xr) relative to u satisfies all the requirements of rheorem 2.b [b]
which guarantees that the subsequence (X.r, u e u) converges a.s. to sonre
X e Lr(A). Thus if we define finally the sequence (P,) by

Pn: Xn - E"(X) or Xn: E"(X) + Pn, (17)

r, € N then (P",) is also a {r,}-game satisfying

l iminf E(lp"_l) S ri*i"rr(lx"_l) + E(lxl) < oo

This with the decomposition (17) and Levy's Theorem proves that the {r,"}-
game (X,) converges to X in probability as (E"(X)). It completes the proof.

T

It is clear that (2) follows immediately from the stronger assumption that
(X"-) is uniformly integrable. The main sense of this remark is that under the
stronger hypothese we get the following converse conclusion:

Proposition 2.3. Let (x*) be a game unth (x"-) being uniformly integrable
and (X^) conuerging in probability. Suppose that either there erists some d e N
such that nch rn satisfies

Card { /c  e N,  P({ r* :  k} )  > 0}  < d,

or each rn is ind,ependent of the ,increments

{(X^- Xn),  m e ,nr(n)}.

Then (X^) must be a {r,,-}-game. Moreouer the statement lails true if we remoue
the aboue two ad,ditional assumptions simultaneously.

Proof. To see the first part of the proposition, let (X") be a game with (Xr_)
being uniformly integrable. Suppose that (x") convefges in probability to some
r.v. X. For the first case, assume in addition that there exists d € N such that
f o r e a c h n € N w e h a v e

cara {r e lr,

Then this with the stochastic convergence of (X,) to X, implies that for a given
e ) 0 there exists p € N such that

s u p P ( l x , - x l  > r ) < : .
nip ' d'

Thus for all n ) p one obtains

)
P ( t " . : k j ) > 0 j S d .



Stochastic Modeb of Games Which Bemrne Fairer with Stopping Time

p( lx,*-  x l  > ' )  < t  r ( {n:  /c}  n { lxu -  x l  > ' i )
k>p

(  card {rr-0,  
P({r* :  / r } )  > o} 

;gP( lx* 
-  x l  > ' )

S  d Z : , ,
since rr ) P.

It means that the sequence (X"*) converges also to X in probability. But

(X"_) was assumed to be uniformly integrable, it follows that (x"*) converges

to X in -Ll as well.
This with chebyshev's inequality and Levy's Theorem guarantees that (X")

is a {rr"}-game since for any e > 0 and p,n € N with p ( n' we have

p(lEe(x,-) - xpl> ,) < e(ln'(x,^) -E"(x)l t ;)
+ P(lEe6)- xl  '  i )  * P(lx - 

""1 
'  i )

Hence we have

P( lx"^  -  x l>r )  =  i  " (  
{ rn :  m}n { lx -  -  x l  >  ' } )

3 | P(r": rn)'P(lX^ - Xl > e)
rn)P

: 
i3l"(lx* 

- Xl > '),

since rr" ) n,.
nui fy the common assumption, (Xr,) 

"ott 
tetges to X in probability, then

so does (x"^).This with the last argument, used in the first case implies that

(&) shouli'Le a {r,}-game which completes the proof of the second situation

of the proposition'
To construct a counter-example mentioned in the second part of the propo-

sition, Iet (Q, A,P) be the usual Lebesgue probability space on [0,1)'
For each m € N,let Q* be the partition of [0, 1), given by

r r i - L  f  r  )
Q - = t l ; , k ) , r s i s m j .

F\rrther, set os:0 and o- : &m-r*m, m € N' Then for every n € N' there

is a unique pair (rn, j) € N2 such that 1 < i 3m and n: a,n-r|. i '
Thus we can define

267
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It is clear that 0 S X* S 1 and (X,) converges to zero in probability.
Now we are looking at the sequence (r,) of bounded stopping times given by

,. : f{o,-r + j)./; i=, r) .
j : r

It is clear that
n  1  an - t  1 rn  1  en  1Tn+ t ,  n  €  N .

Moreover, each X,*: 1. Consequently, for any q,n € N with 2 I q 1 rn we
have

P(l ls(x,-) -  xnl > l)  
:  t  -  P(xo # o), ; .

Hence (X,) cannot be a {r,}-game. It completes the construction and the
proof of the proposition. I

Finally, to convince the readers that the last two stochastic models are truely
more realistic we propose the following simple remark.

Remark -/. There exists a nonnegative -Ll-bounded game (Xr) which is not fairer
with time. But it is a {r,"}-mil with each X,^:0. Hence, it converges to zero,
a.s,

Indeed,  f i rs t  we take O:  [0,  1)  and a6:0.  For  n)  t , le t  def ine
n

an :D2-O+i) and An: o - ([o*-r, ap), lc < n).
j : r

Let A be the smallest o-algebra generated by U An and P the usual Lebesgue

probability measure on [0, 1), restricted to "4. On the probability space ([0, 1), r4,
P) with its stochastic basis (r4,) we shall construct the desired example (Xr,)
as follows

Xn :2n+1  . I l an -L ,an ) ,  n  €  N ,

where Ia denotes the characteristic function of. A e A. It is evident that each
X"20 and E(X' )  :1 .  However,  note that  for  anY P,n€ N wi thp < n we
have

tr (X") : (1 - ao)-r.1p,,t1.

Then
( ,  - -  .  1  t
t IEP(x') - xol > 5j 

: lan-r,r).

This implies
p (  -  l t  

,  1'  \ lE ' (x")  
-  Xr l  > i )  

: ' -  or-r  > 
- i '

It shows that (X") cannot be a game fairer with time.

On the other hand, if we look at the sequence (rr, ) of bounded stopping times
given by
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( n ,  t € [ 4 " , 1 )
r n \ t ) : t n l 1 ,  

e l s e w h e r e

then it is clear that for every r, € N we have

n I  rn S n *  r :  min 
{ f  

e  l r ,  P({ r**r :  / t } )  t  0} .

Moreover, each X,^: 0. In this case, the statement that (X") it a {z'}-mil,
is equivalent to the fact that (X') converges to zero a.s' But the fact is trivial'

The construction, hence the proof of the remark is complete'

For another kind of such examples, constructed on a purely nonatomic prob-

ability space, the interested reader is referred to ([2, Example 1])'
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