On Continuity Properties of the Solution Map in Linear Complementarity Problems

Huynh The Phung
Department of Mathematics, College of Sciences, University of Hue 77 Nguyen Hue Str., Hue, Vietnam

Received January 15, 2001
Revised June 18, 2001

Abstract

In an earlier paper [3] we have proved that, in a linear complementarity problem with a Q-matrix, the Lipschitzian continuity and the lower semicontinuity of the solution map are equivalent. In this paper, this fact is proved in the general case where the underlying matrix M of the problem need not have any prescribed special structure.

1. Introduction

For a given $M \in \mathbb{R}^{n \times n}$ and a vector $q \in \mathbb{R}^{n}$, the linear complementarity problem corresponding to M and q is to find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x \geq 0, \quad M x+q \geq 0, \quad x^{T}(M x+q)=0 \tag{1.1}
\end{equation*}
$$

The solution set of (1.1) is denoted by $S_{M}(q)$. Thus, for a fixed M, S_{M} is a set-valued map from \mathbb{R}^{n} into \mathbb{R}_{+}^{n}. It was known [1] that

$$
\begin{equation*}
\operatorname{Dom} S_{M}=\bigcup_{\alpha \subseteq I} K_{\alpha} \tag{1.2}
\end{equation*}
$$

where $I=\{1,2, \ldots, n\}$ and K_{α} is the complementarity cone corresponding to the index set α which is defined by setting

$$
\begin{equation*}
K_{\alpha}:=\left\{\sum_{i \in \alpha} \lambda_{i}\left(-M^{i}\right)+\sum_{j \in I \backslash \alpha} \mu_{j} e_{j} \mid \lambda_{i} \geq 0, i \in \alpha ; \mu_{j} \geq 0, j \in I \backslash \alpha\right\} \tag{1.3}
\end{equation*}
$$

with M^{i} standing for the $i^{\text {th }}$ column vector in M and e_{j} being the $j^{\text {th }}$ unit vector in \mathbb{R}^{n}.

In Sec. 3 we shall prove that, for any $M \in \mathbb{R}^{n \times n}$ the solution map S_{M} is Lipschitz on its effective domain if and only if it is lower semicontinuous on the set. To this end, we first show that if S_{M} is lower semicontinuous on Dom S_{M} then M is nondegenerate, and then, by utilizing results in $[2,4]$ we deduce that in this case S_{M} is also Lipschitz continuous on Dom S_{M}.

From now on, let M be an $n \times n$-matrix with elements $a_{i j} \in \mathbb{R}, 1 \leq i, j \leq n$. For $\alpha \subseteq\{1,2, \ldots, n\}$, let M_{α} denote the submatrix of M with the elements $a_{i j}$, $i, j \in \alpha$. The determinants of these matrices are called the principal minors of M. A matrix is said to be nondegenerate if all of the principal minors are nonzero. If at least one of the principal minors is zero then M is a degenerate matrix. For abbreviation, we write M_{k} instead of $M_{\{1,2, \ldots, k\}}$.

Recall that, a set-valued map F from \mathbb{R}^{n} into \mathbb{R}^{n} is said to be Lipschiptz on a subset $U \subset \mathbb{R}^{n}$ if there exists a constant number L such that

$$
\begin{equation*}
H(F(p), F(q)) \leq L\|p-q\| ; \quad \forall p, q \in U, \tag{1.4}
\end{equation*}
$$

where $H(.,$.$) denotes the Hausdorff distance. F$ is called lower semicontinuous (l.s.c. for short) at $\bar{q} \in \operatorname{Dom} F$ if for any $\bar{x} \in F(\bar{q})$ and $\epsilon>0$ there exists $\delta>0$ such that $F(q) \cap B(\bar{x}, \epsilon) \neq \emptyset$ for all $q \in B(\bar{q}, \delta) \cap \operatorname{Dom} F$. Or, equivalently, for any $\bar{x} \in F(\bar{q})$ and any sequence $\left(q^{m}\right) \subset \operatorname{Dom} F$ converging to \bar{q} there exists a sequence (x^{m}) such that $x^{m} \in F\left(q^{m}\right)$ for each $m \in \mathbb{N}$ and $x^{m} \rightarrow \bar{x}$. Finally, F is said to be l.s.c. if it is l.s.c. at every point of $\operatorname{Dom} F$.

2. Lower Semicontinuity of S_{M} Implies Nondegeneracy of M

Theorem 2.1 below is one of the two main results of this paper. For the proof of that theorem we shall need the following lemma.

Lemma 2.1. Let $M \in \mathbb{R}^{n \times n}$. For every $n \geq k \geq 2$ and $k \geq l \geq 1$ there exists a vector $v=\left(v_{1}, v_{2}, \cdots, v_{k}\right)^{T} \in \mathbb{R}^{k}$ such that

$$
\begin{equation*}
v_{l}=\operatorname{det}\left(M_{\{1, \ldots, k\} \backslash\{l\}}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{T} M_{k}=\operatorname{det}\left(M_{k}\right) \cdot e_{l}^{T} \tag{2.2}
\end{equation*}
$$

Proof. For each $i=1, \ldots, k$ we define v_{i} as the cofactor of $a_{i l}$ in the matrix M_{k}. By M_{k}^{j} we denote the j-th column vector of M_{k}. From the theory of determinants it follows that

$$
v^{T} M_{k}^{j}= \begin{cases}0 & \text { if } j \neq l \\ \operatorname{det}\left(M_{k}\right) & \text { if } j=l\end{cases}
$$

Or, $v^{T} M_{k}=\operatorname{det}\left(M_{k}\right) e_{l}^{T}$. Besides, $v_{l}=\operatorname{det}\left(M_{\{1, \cdots, k\} \backslash\{l\}}\right)$ by definition. The proof is complete.

Theorem 2.1. For any $M \in \mathbb{R}^{n \times n}$, if $S_{M}(\cdot)$ is l.s.c. then M is nondegenerate.
Proof. We first consider the case $n=1$. If M is degenerate then $M=(0)$ and

$$
S_{M}(q)= \begin{cases}\mathbb{R}_{+} & \text {if } q=0 \\ 0 & \text { if } q>0 \\ \emptyset & \text { if } q<0\end{cases}
$$

So S_{M} is not l.s.c. at $q=0 \in \operatorname{Dom} S_{M}$.
Now, for the case $n \geq 2$, we suppose, by contrary, that S_{M} is l.s.c. and M is degenerate. Denote by M_{α} the singular submatrix of M having the property that all its proper principal minors are nonzero. Without loss of generality, we can assume that $\alpha=\{1,2, \ldots, k\}, k \leq n$. So, $\operatorname{det}\left(M_{k}\right)=0$ and, if $k>1$, $\operatorname{det}\left(M_{\{1, \ldots, k\} \backslash\{l\}}\right) \neq 0$ for all $l \in\{1, \ldots, k\}$.

If $k=1$ then $a_{11}=0$. Choose $\bar{x}:=(1,0, \cdots, 0)^{T} \in \mathbb{R}^{n}$ and, for each $m \in N$, set

$$
\bar{q}:=\left(\begin{array}{c}
0 \tag{2.3}\\
r \\
\vdots \\
r
\end{array}\right) \in \mathbb{R}^{n}, \quad q^{m}:=\left(\begin{array}{c}
\frac{1}{m} \\
r \\
\vdots \\
r
\end{array}\right) \in \mathbb{R}^{n},
$$

where $r:=\max \left\{\left|a_{21}\right|,\left|a_{31}\right|, \ldots,\left|a_{n 1}\right|\right\}+1 \geq 1$. It is not difficult to verify that $\bar{x} \in S_{M}(\bar{q}), 0 \in S_{M}\left(q^{m}\right)$ for every $m \in N$. So $\bar{q} \in \operatorname{Dom} S_{M}$ and $q^{m} \in \operatorname{Dom} S_{M}$ for every $m \in N$. Furthermore, $q^{m} \rightarrow \bar{q}$. By the lower semicontinuity of $S_{M}($.) there exists a sequence $\left(x^{m}\right)$ satisfying $x^{m} \in S_{M}\left(q^{m}\right)$ for all $m \in N$ and

We have

$$
\begin{gather*}
\lim _{m \rightarrow \infty} x^{m}=\bar{x}=(1,0, \ldots, 0)^{T} . \tag{2.4}\\
\lim _{m \rightarrow \infty}\left(M x^{m}+q^{m}\right)=M \bar{x}+\bar{q}=\left(\begin{array}{c}
0 \\
a_{21}+r \\
\vdots \\
a_{n 1}+r
\end{array}\right) \geq\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
1
\end{array}\right) .
\end{gather*}
$$

It follows from (2.4) and (2.5) that for some m_{0} large enough we have

$$
\left\{\begin{array}{l}
\left(M x^{m_{0}}+q^{m_{0}}\right)_{j}>0 ; \quad \forall j \geq 2 \tag{2.6}\\
x_{1}^{m_{0}}>0
\end{array}\right.
$$

Since $x^{m_{0}} \in S_{M}\left(q^{m_{0}}\right)$, from (2.6) we obtain

$$
\left\{\begin{array}{l}
x_{j}^{m_{0}}=0 ; \quad \forall j \geq 2 \tag{2.7}\\
\left(M x^{m_{0}}+q^{m_{0}}\right)_{1}=0
\end{array}\right.
$$

Using the first property in (2.7) and the assumption $a_{11}=0$, one has

$$
\left(M x^{m_{0}}+q^{m_{0}}\right)_{1}=\sum_{j=1}^{n} a_{1 j} x_{j}^{m_{0}}+q_{1}^{m_{0}}=\frac{1}{m_{0}}>0
$$

This contradicts the second property in (2.7).
Now assume that $k>1$. Since M_{k} is singular, k column vectors of M_{k} are linearly dependent. By Lemma 2.1 in [2] we can find $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ such that at least one of them equals zero and

$$
\begin{equation*}
\sum_{j=1}^{k} M_{k}^{j}=\sum_{j=1}^{k} \lambda_{j} M_{k}^{j} \tag{2.8}
\end{equation*}
$$

Since all the columns of M_{k} have the same role in the sense that $M_{\{1, \ldots, k\} \backslash\{l\}}$ is nonsingular for all $l \in\{1, \ldots, k\}$, without loss of generality we can assume that $\lambda_{k}=0$ and (2.8) can be rewritten as follows

$$
\begin{equation*}
\sum_{j=1}^{k} a_{i j}=\sum_{j=1}^{k-1} \lambda_{j} a_{i j} ; \quad \forall i=1, \ldots, k \tag{2.9}
\end{equation*}
$$

Now let $\bar{x}, x^{\prime}, \bar{q}, q^{m}(m \in N)$ be the vectors in \mathbb{R}^{n} defined by

$$
\left.\begin{array}{c}
\bar{x}:=\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad x^{\prime}:=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{k-1} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \\
\bar{q}:=\left(\begin{array}{c}
-\sum_{j=1}^{k} a_{1 j} \\
\vdots \\
-\sum_{j=1}^{k} a_{k j} \\
r \\
\vdots \\
r
\end{array}\right), \quad q^{m}:=\bar{q}+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{m} \\
0 \\
\vdots \\
0
\end{array}\right)\left(k^{t h}\right) \tag{2.11}
\end{array}\right),
$$

where

$$
r:=\max \left\{\left|\sum_{j=1}^{k} a_{k+1, j}\right|, \ldots,\left|\sum_{j=1}^{k} a_{n j}\right|,\left|\sum_{j=1}^{k-1} \lambda_{j} a_{k+1, j}\right|, \ldots,\left|\sum_{j=1}^{k-1} \lambda_{j} a_{n j}\right|\right\}+1
$$

Then

$$
M \bar{x}+\bar{q}=\left(\begin{array}{c}
\sum_{j=1}^{k} a_{1 j} \tag{2.12}\\
\sum_{j=1}^{k} a_{2 j} \\
\vdots \\
\sum_{j=1}^{k} a_{n j}
\end{array}\right)+\bar{q}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\sum_{j=1}^{k} a_{k+1, j}+r \\
\vdots \\
\sum_{j=1}^{k} a_{n j}+r
\end{array}\right) \geq\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\vdots
\end{array}\right)
$$

Using (2.9)-(2.11), we obtain

$$
\begin{align*}
& M x^{\prime}+q^{m}=\left(\begin{array}{c}
\sum_{j=1}^{k-1} \lambda_{j} a_{1 j} \\
\sum_{j=1}^{k-1} \lambda_{j} a_{2 j} \\
\vdots \\
\sum_{j=1}^{k-1} \lambda_{j} a_{n j}
\end{array}\right)+q^{m} \\
& 0 \tag{2.13}\\
& \vdots \\
& 0 \\
& \frac{1}{m} \\
&=\left(\begin{array}{c}
\\
\sum_{j=1}^{k-1} \lambda_{j} a_{k+1, j}+r \\
\vdots \\
\sum_{j=1}^{k-1} \lambda_{j} a_{n j}+r
\end{array}\right) \geq\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{m} \\
1 \\
\vdots \\
1
\end{array}\right.
\end{align*}
$$

Combining (2.12) and (2.13) with (2.10) it implies that $\bar{x} \in S_{M}(\bar{q})$ and $x^{\prime} \in S_{M}\left(q^{m}\right) ; \forall m \in N$. Furthermore, $q^{m} \longrightarrow \bar{q}$ as $m \longrightarrow \infty$. By the lower semicontinuity of S_{M}, there exists a sequence (x^{m}) converging to \bar{x} and $x^{m} \in$ $S_{M}\left(q^{m}\right), m \in N$. Since $x^{m} \longrightarrow \bar{x}$ and $M x^{m}+q^{m} \longrightarrow M \bar{x}+\bar{q}$, from (2.10) and (2.12) it follows that there exists m_{0} large enough such that

$$
\begin{cases}x_{i}^{m_{0}}>0, & \forall i=1, \ldots, k \tag{2.14}\\ \left(M x^{m_{0}}+q^{m_{0}}\right)_{j}>0 ; & \forall j=k+1, \ldots, n\end{cases}
$$

Since $x^{m_{0}} \in S_{M}\left(q^{m_{0}}\right)$, (2.14) implies

$$
\begin{cases}\left(M x^{m_{0}}+q^{m_{0}}\right)_{i}=0 ; & \forall i=1, \ldots, k \tag{2.15}\\ x_{j}^{m_{0}}=0 ; & \forall j=k+1, \ldots, n\end{cases}
$$

Thus, by setting $z:=M x^{m_{0}}+q^{m_{0}}$ one gets

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
z_{k+1} \\
\vdots \\
z_{n}
\end{array}\right) & =z=M x^{m_{0}}+q^{m_{0}} \\
& \left.=M\left(\begin{array}{c}
x_{1}^{m_{0}} \\
\vdots \\
x_{k}^{m_{0}} \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
-\sum_{j=1}^{k} a_{1_{j}} \\
\vdots \\
-\sum_{j=1}^{k} e_{k_{j}} \\
r \\
\vdots \\
r
\end{array}\right)+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{m_{0}}
\end{array}\right)\left(k^{t h}\right)\right) \tag{2.16}\\
\vdots \\
\vdots \\
0
\end{array}\right) .
$$

Noting that M_{k}^{j} is the $j^{\text {th }}$ column vector of M_{k}, one derives from (2.16) that

$$
\sum_{j=1}^{k} x_{j}^{m_{0}} M_{k}^{j}-\sum_{j=1}^{k} M_{k}^{j}+\left(\begin{array}{c}
0 \tag{2.17}\\
\vdots \\
0 \\
\frac{1}{m_{0}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
0
\end{array}\right) \in \mathbb{R}^{k}
$$

By virtue of Lemma 2.1 we can find $v=\left(v_{1}, \ldots, v_{k}\right)^{T} \in \mathbb{R}^{k}$ satisfying

$$
\begin{equation*}
v^{T} M_{k}=(0, \ldots, 0)^{T} \in \mathbb{R}^{k} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}=\operatorname{det}\left(M_{k-1}\right) \tag{2.19}
\end{equation*}
$$

Taking the scalar product of both sides of the equality in (2.17) with v we have

$$
\sum_{j=1}^{k}\left(x_{j}^{m_{0}}-1\right) v^{T} M_{k}^{j}+\frac{1}{m_{0}} v_{k}=0
$$

This together with (2.18) gives $\operatorname{det}\left(M_{k-1}\right)=v_{k}=0$, a contradiction with the definition of M_{k}. So M is nondegenerate and the proof is complete.

3. Equivalence Between the Two Continuity Properties

The next theorem is the second main result of this paper.
Theorem 3.1. Let $M \in \mathbb{R}^{n \times n}$. Then S_{M} is Lipschitz on $\operatorname{Dom} S_{M}$ if and only if it is lower semicontinuous. .

Proof. Obviously, we need only verify the sufficient condition. Assume that S_{M} is l.s.c. on $\operatorname{Dom} S_{M}$. By Theorem $2.1 M$ is nondegenerate, and hence, by [1] $S_{M}(q)$ is a finite set for every $q \in \operatorname{Dom} S_{M}$. Besides, by virtue of [4, Proposition 1], S_{M} is uniformly locally upper Lipschitz on $\operatorname{Dom} S_{M}$. That is, with a certain positive number $\lambda>0$, for all $\bar{q} \in \operatorname{Dom} S_{M}$ there exists $\delta(\bar{q})>0$ such that

$$
\begin{equation*}
S_{M}(q) \subset S_{M}(\bar{q})+\lambda\|q-\bar{q}\| B(0,1) ; \quad \forall q \in B(\bar{q}, \delta(\bar{q})) \tag{3.1}
\end{equation*}
$$

The proof of the theorem now can be divided into three lemmas.
Lemma 3.1. For any $\bar{q} \in \operatorname{Dom} S_{M}$ there exists $\eta>0$ such that

$$
\begin{equation*}
H\left(S_{M}(q), S_{M}(\bar{q})\right) \leq \lambda\|q-\bar{q}\| ; \quad \forall q \in B(\bar{q}, \eta) \cap \operatorname{Dom} S_{M} \tag{3.2}
\end{equation*}
$$

Proof. Take any $\bar{q} \in \operatorname{Dom} S_{M}$ and assume that $S_{M}(\bar{q})=\left\{x^{1}, \ldots, x^{k}\right\}$. We set

$$
\begin{equation*}
\epsilon:=\min \left\{\left\|x^{i}-x^{j}\right\|, 1 \leq i<j \leq k\right\}>0 \tag{3.3}
\end{equation*}
$$

Since S_{M} is l.s.c. at \bar{q} and $S_{M}(\bar{q})$ is finite, there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
S_{M}(q) \cap B\left(x^{i}, \frac{\epsilon}{2}\right) \neq \emptyset ; \quad \forall q \in B\left(\bar{q}, \delta_{1}\right) \cap \operatorname{Dom}_{M}, \forall i=1,2, \ldots, k \tag{3.4}
\end{equation*}
$$

We now choose $\eta:=\min \left\{\delta_{1}, \delta(\bar{q}), \epsilon / 2 \lambda\right\}$. Then for all $q \in B(\bar{q}, \eta) \cap \operatorname{Dom} S_{M}$ both (3.1) and (3.4) hold. For every $x^{i} \in S_{M}(\bar{q})$, by (3.4) there exists v such that

$$
\begin{equation*}
v \in S_{M}(q) \text { and }\left\|v-x^{i}\right\|<\frac{\epsilon}{2} \tag{3.5}
\end{equation*}
$$

By the definition of ϵ it follows that

$$
\begin{equation*}
v \notin x^{j}+\frac{\epsilon}{2} B(0,1), \quad \forall j \neq i \tag{3.6}
\end{equation*}
$$

hence, noting that $\lambda\|q-\bar{q}\|<\lambda \eta \leq \epsilon / 2$ we have

$$
\begin{equation*}
v \notin x^{j}+\lambda\|q-\bar{q}\| B(0,1), \quad \forall j \neq i . \tag{3.7}
\end{equation*}
$$

On the other hand, from (3.1) it follows that

$$
\begin{equation*}
v \in S_{M}(q) \subset \bigcup_{j=1}^{k}\left(x^{j}+\lambda\|q-\bar{q}\| B(0,1)\right) \tag{3.8}
\end{equation*}
$$

Combining this with (3.7) we get

$$
v \in x^{i}+\lambda\|q-\bar{q}\| B(0,1)
$$

or,

$$
x^{i} \in v+\lambda\|q-\bar{q}\| B(0,1) \subset S_{M}(q)+\lambda\|q-\bar{q}\| B(0,1)
$$

Since this inclusion holds for every $x^{i} \in S_{M}(\bar{q})$, it follows that

$$
S_{M}(\bar{q}) \subset S_{M}(q)+\lambda\|q-\bar{q}\| B(0,1)
$$

which together with (3.1) yields (3.2).
Lemma 3.2. For all $p, q \in \operatorname{Dom} S_{M}$ such that $[p, q] \subset \operatorname{Dom} S_{M}$ we have

$$
\begin{equation*}
H\left(S_{M}(p), S_{M}(q)\right) \leq \lambda\|p-q\| \tag{3.9}
\end{equation*}
$$

where $[p, q]$ denotes the segment $\operatorname{co}\{p, q\}$.
Proof. This lemma can be derived from Lemma 3.1 and the compactness of the segment $[p, q]$.

Lemma 3.3. There exists $L \geq 0$ such that

$$
H\left(S_{M}(p), S_{M}(q)\right) \leq L\|p-q\|, \quad \forall p, q \in \operatorname{Dom}_{M}
$$

From this lemma the theorem follows.
Proof. Applying [2, Corollary 2.1] for the class of polyhedral convex cones $\left\{K_{\alpha}, \alpha \subseteq I\right\}$ there exists $\gamma>0$ such that for all $p \in K_{\alpha}, q \in K_{\beta}$ with $\alpha \subseteq I$, $\beta \subseteq I$, there exists $u \in K_{\alpha} \cap K_{\beta}$ satisfying

$$
\begin{equation*}
\|p-q\| \geq \gamma(\|p-u\|+\|q-u\|) \tag{3.10}
\end{equation*}
$$

Now we set $L:=\lambda / \gamma$. For all $p, q \in \operatorname{Dom} S_{M}$ there are $\alpha \subseteq I$ and $\beta \subseteq I$ such that $p \in K_{\alpha}$ and $q \in K_{\beta}$. Denoting $u \in K_{\alpha} \cap K_{\beta}$ the vector satisfying (3.10) we have

$$
[u, p] \subset K_{\alpha} \subset \operatorname{Dom}_{M},[u, q] \subset K_{\beta} \subset \operatorname{Dom} S_{M}
$$

From (3.9) one gets

$$
\begin{aligned}
& H\left(S_{M}(p), S_{M}(u)\right) \leq \lambda\|u-p\|, \\
& H\left(S_{M}(u), S_{M}(q)\right) \leq \lambda\|u-q\| .
\end{aligned}
$$

Combining these two inequalities we obtain

$$
\begin{aligned}
H\left(S_{M}(p), S_{M}(q)\right) & \leq H\left(S_{M}(p), S_{M}(u)\right)+H\left(S_{M}(u), S_{M}(q)\right) \\
& \leq \lambda(\|u-p\|+\|u-q\|) \\
& \leq \frac{\lambda}{\gamma}\|p-q\|=L\|p-q\|
\end{aligned}
$$

The proof is complete.

References

1. K. G. Murty, On the number of solutions to the complementarity problems and spanning properties of complementarity cones, Linear Algebra and its Applications 5 (1972) 65-108.
2. H. T. Phung, On the locally uniform openness of polyhedral sets, Acta Math. Vietnam. 25 (2000) 273-284.
3. H. T. Phung, Solution to a question by J.-S. Pang, Preprint No. 18 (1995), Institute of Math., Vietnam.
4. S. M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Program. Study 14 (1981) 206-214.
