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Abstract. In an earlier paper (3] we have proved that, in a linear complementarity
problem with a Q-matrix, the Lipschitzian continuity and the lower semicontinuity of
the solution map are equivalent. In this paper, this fact is proved in the general case
where the underlying matrix M of the problem need not have any prescribed special
structure.

1. Introduction

For a given M € R™*™ and a vector ¢ € R™, the linear complementarity problem
corresponding to M and q is to find z € R™ such that

>0, Mz+q>0, zT(Mz+q)=0. (1.1)

The solution set of (1.1) is denoted by Sar(g). Thus, for a fixed M, Sp is a
set-valued map from R™ into R%. It was known [1] that

DomSy = | Ka, (1.2)
aCl
where I = {1,2,...,n} and K, is the complementarity cone corresponding to

the index set o which is defined by setting

Ky = {Z)\i(—Mi) + Z piej | Ai=>0,i€a; pu; >20,5€ I\a}, (1.3)
ica jel\a

with M standing for the it* column vector in M and e; being the j* unit vector
in R™.
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In Sec. 3 we shall prove that, for any M € R™*™ the solution map Sy is
Lipschitz on its effective domain if and only if it is lower semicontinuous on the
set. To this end, we first show that if Sjs is lower semicontinuous on DomS;
then M is nondegenerate, and then, by utilizing results in [2,4] we deduce that
in this case Sas is also Lipschitz continuous on DomS),,.

From now on, let M be an n x n-matrix with elements a;; € R, 1 <4,5 < n.
For a C {1,2,...,n}, let M, denote the submatrix of M with the elements a;;,
1,j € a. The determinants of these matrices are called the principal minors
of M. A matrix is said to be nondegenerate if all of the principal minors are
nonzero. If at least one of the principal minors is zero then M is a degenerate
matrix. For abbreviation, we write My instead of M{1,2,...,k}-

Recall that, a set-valued map F from R™ into R™ is said to be Lipschiptz on
a subset U C R™ if there exists a constant number L such that

H(F(p),F(q)) < Lllp—4l; VYp,geU, (1.4)

where H(.,.) denotes the Hausdorff distance. F is called lower semicontinuous
(Is.c. for short) at ¢ € DomF if for any Z € F(g) and € > 0 there exists § > 0
such that F(q) N B(Z,¢) # d for all ¢ € B(g,d6) N DomF. Or, equivalently, for
any Z € F(q) and any sequence (¢™) C DomF converging to g there exists a
sequence (z™) such that 2™ € F(¢™) for each m € N and £™ — Z. Finally, F
is said to be Ls.c. if it is l.s.c. at every point of DomF.

2. Lower Semicontinuity of Sj; Implies Nondegeneracy of M

Theorem 2.1 below is one of the two main results of this paper. For the proof
of that theorem we shall need the following lemma.

Lemma 2.1. Let M € R™**™, For everyn >k > 2 and k > 1 > 1 there ezists a

vector v = (v1,va, - - ,vk)T € R* such that

v = det (M1,...kp\(1}) (2.1)
and

vT My = det(My).ef. (2.2)

Proof. For each i = 1,...,k we define v; as the cofactor of a; in the matrix
M. By M we denote the j-th column vector of My. From the theory of
determinants it follows that

mg={0 i
det(My) if j=1.

Or, vTM; = det(Mk)elT. Besides, v; = det (M{1,~--,k}\{l}) by definition. The
proof is complete. [ ]

Theorem 2.1. For any M € R™*"™, if Sp(-) is L.s.c. then M is nondegenerate.

Proof. We first consider the case n = 1. If M is degenerate then M = (0) and
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R+ lfq=0,
Su(g)=< 0 if¢>0,
¢ ifg<O.

So S is not ls.c. at ¢ =0 € DomSy,.

Now, for the case n > 2, we suppose, by contrary, that Sy is ls.c. and M
is degenerate. Denote by M, the singular submatrix of M having the property
that all its proper principal minors are nonzero. Without loss of generality, we
can assume that a = {1,2,...,k}, k < n. So, det(My) = 0 and, if & > 1,
det (M{l,...,k}\{l}) #0forallle {1, .. .,k}.

If k = 1 then aj; = 0. Choose Z := (1,0, -+ ,0)T € R™ and, for each m € N,
set

1
0 =
r r .
g=|" |er, =" |ern, (2.3)
T r
where r == max{|az|,lazil,. -, lant|} +1 > 1. It is not difficult to verify that

T € Sm(q), 0 € Sm(g™) for everym € N. So g € DomSys and ¢™ € DomSs
for every m € N. Furthermore, ¢ — §. By the lower semicontinuity of Sp(.)
there exists a sequence (z™) satisfying ™ € Sp(¢™) for all m € N and

lim z™ =z = (1,0,...,0)T. (2.4)
m—00
We have 0 0
ag) +7r 1
lim (Mz™ +q™) =Mz +q= ; >3] (P (2.5)
m—oo £ :
Qa1+ T 1
It follows from (2.4) and (2.5) that for some mg large enough we have
Mz™ 4 g™); >0; Vj>2,
{ (mm qm°); J (2.6)
z7° > 0.
Since z™° € Spr(g™°), from (2.6) we obtain
i =0; Vjiz2,
{ I 9 @2.7)
(Mz™ 4 ¢™); = 0.

Using the first property in (2.7) and the assumption aq; = 0, one has

n
1
Mz™ + g™° =§;a-m’."°+m°=——>0.
(Mz™ + ™) 'j=11,, q -

This contradicts the second property in (2.7).

Now assume that k > 1. Since My is singular, k column vectors of My, are
linearly dependent. By Lemma 2.1 in [2] we can find Aj,...,Ax > 0 such that
at least one of them equals zero and
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k
WS
j=1

Since all the columns of My have

is nonsingular for all I € {1,...,k},
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M.
1

k
(2.8)

J

the same role in the sense that M(; . x)\({1}
without loss of generality we can assume

that Ax = 0 and (2.8) can be rewritten as follows

k k-1
Zaij = Z/\jaij; Vi = 1,...,k. (2.9)
j=1 j=1
Now let Z, =/, G, ¢™ (m € N) be the vectors in R™ defined by
/1 A1
1 Me—1
z=[1 &M |, = 0 |, (2.10)
0 0
\ 0
k 0
- EJ:I aij :
ks 0
gi=| L= |, ¢mi=g4+| L &M, (2.11)
T 0
r 0

where

k k
r.= max{|2ak+1,j|,...,|2a
j=1 j=1

Then

k
> j=101j

k
Mz+g= ZJ‘.‘ Pl 4g=

1
Zj:l Qnj

Using (2.9)-(2.11), we obtain

k-1 k-1
nj|, | Z)\jak+1,j|, ey | z/\janjl} + 1.
i=1 j=1

1

g 0
0 0 (kth)
E?:l Qg1 +7 | < . (2.12)

Z?=1 Qnj +T
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(Z Aj ja1j

Mz + g™ =

3|,...o 90 o

k—1
2ojm1 AjGk1,i T

k Y521 Ajng + 7

Vv

o

e | =

1

(k)

255

(2.13)

Combining (2.12) and (2.13) with (2.10) it implies that £ € Sum(g) and
z' € Sp(¢™); Ym € N. Furthermore, ¢™ — g as m — oo. By the lower
semicontinuity of Sps, there exists a sequence (z™) converging to  and z™ €
Su(g™), m € N. Since z™ — % and Mz™ 4 ¢™ -— MZ + ¢, from (2.10) and
(2.12) it follows that there exists mo large enough such that

‘,L.:;no>0, Vi=1,...,
(Mz™ 4 gme); > 05 Nj=k+1,....n

Since z™° € Spr(g™°), (2.14) implies

(Mz™o 4 g™0); =0; Vi=1,...,k,
T = 0; Vi=k+1,...,n
Thus, by setting z := Mz™° 4 ¢™° one gets
¥y
0
0 ==, M™% g%
2k+1
Zn
:z’Jlno e Z.,;—l ay; 0
0
M| % |+ > i=10k, T
0 o
@ 0
0 r \ 0

k,

(k)

(2.14)

(2.15)

(2.16)

Noting that M, ,ﬁ is the " column vector of Mg, one derives from (2.16) that
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0 0
k . K \ ; :
oM - M} + o [=lo]e RE. (2.17)
j=1 i=1 -
e 0
By virtue of Lemma 2.1 we can find v = (v1,...,v)T € R* satisfying
v My = (0,...,00T e R (2.18)
and
Ve = det(Mk~1). (219)

Taking the scalar product of both sides of the equality in (2.17) with v we have

k

; 1
Z(x_f,“ ~ T M + —u = 0.
i=1 e

This together with (2.18) gives det(My_1) = vx = 0, a contradiction with the
definition of My. So M is nondegenerate and the proof is complete. n

3. Equivalence Between the Two Continuity Properties
The next theorem is the second main result of this paper.

Theorem 3.1. Let M € R"*". Then Sy is Lipschitz on DomSys if and only
if it is lower semicontinuous. -

Proof. Obviously, we need only verify the sufficient condition. Assume that Sy,
is Ls.c. on DomSpy. By Theorem 2.1 M is nondegenerate, and hence, by [1]
Sum(q) is a finite set for every ¢ € DomSys. Besides, by virtue of [4, Proposition
1), Sar is uniformly locally upper Lipschitz on DomSys. That is, with a certain
positive number A > 0, for all § € DomS) there exists §(g) > 0 such that

Sm(q) C Sm(@) + Alg—gllB(0,1); Vg € B(q,5(2))- (3.1)

The proof of the theorem now can be divided into three lemmas. ]

Lemma 3.1. For any § € DomS)s there exists n > 0 such that
H(Sm(q9),Sm(3) < Allg—all; Vg € B(g,n) N DomS)y. (3.2)
Proof. Take any § € DomSy and assume that Sp(q) = {z!,...,2*}. We set
e:=min{||g' - 27|, 1<i<j<k}>0. (3.3)

Since Sy is 1s.c. at ¢ and Sp/(g) is finite, there exists §; > 0 such that

Sm(g)NB (xi, %) #0; Vg€ B(g,61) NDomSyy, Vi=1,2,...,k. (34)
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We now choose 7 := min {41,6(g),e/2A}. Then for all ¢ € B(g,7) N DomSy
both (3.1) and (3.4) hold. For every z* € Sa(g), by (3.4) there exists v such
that

v € Smlg) and [v—-zi| < % (3.5)
By the definition of ¢ it follows that
vga +=B(0,1), Vi#i, (3.6)
hence, noting that Allg — gl| < An < €/2 we have
vz’ + Mg—qllB(0,1), Vj#i. (3.7)
On the other hand, from (3.1) it follows that
k
ve Sm(q) € {J@ + Mg —alB(0,1)). (3.8)
j=1

Combining this with (3.7) we get
v €z + Alg - qll B(0, 1),

or,
z* € v+ Alg - ql|B(0,1) C Sm(q) + Allg — gl B(0,1).

Since this inclusion holds for every z* € Sp(g), it follows that
Sm(3) € Sm(a) + Allg — 4| B(0,1)
which together with (3.1) yields (3.2). n

Lemma 3.2. For all p,q € DomS)s such that [p,q] C DomSys we have

H(Sm(p), Sm(q)) < Allp—dll, (3.9)

where [p, q] denotes the segment co{p, q}.
Proof. This lemma can be derived from Lemma 3.1 and the compactness of the
segment [p, g]. n

Lemma 3.3. There exists L > 0 such that
H(Sm(p), Sm(q)) £ Lilp—4ll, Vp,q € DomSy.
From this lemma the theorem follows.

Proof. Applying [2, Corollary 2.1} for the class of polyhedral convex cones
{Kq, @ C I} there exists vy > 0 such that for all p € K, ¢ € Kg with o C I,
B C I, there exists u € K, N Kp satisfying

llp = all 2 ¥(llp — ul] + llg — ull). (3.10)

Now we set L := A\/v. For all p,qg € DomSys there are « C I and 8 C I such
that p € K, and g € K. Denoting u € Ko N Kp the vector satisfying (3.10) we
have
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[u,p] C Ko C DomSu, [u,q] C Kg C DomSyy.
From (3.9) one gets

H(Sm(p), Sm(u)) < Mju—pll,
H(Sm(u), Sm(q)) < Allu— 4.
Combining these two inequalities we obtain

H(Sm(p), Sm(q)) < H(Sm(p), Snm(w)) + H(Sp(u), Sm(q))
< Mllw = pll + llu—gll)

X
< :Yllp —qll = Lllp -4l

The proof is complete. [
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