Vietnam Journal of Mathematics 30:3 (2002) 251-258

Vietnam Journal of MATHEMATICS © NCST 2002

On Continuity Properties of the Solution Map in Linear Complementarity Problems

Huynh The Phung

Department of Mathematics, College of Sciences, University of Hue 77 Nauven Hue Str., Hue, Vietnam

Received January 15, 2001 Revised June 18, 2001

Abstract. In an earlier paper [3] we have proved that, in a linear complementarity problem with a Q-matrix, the Lipschitzian continuity and the lower semicontinuity of the solution map are equivalent. In this paper, this fact is proved in the general case where the underlying matrix M of the problem need not have any prescribed special structure.

1. Introduction

For a given $M \in \mathbb{R}^{n \times n}$ and a vector $q \in \mathbb{R}^n$, the linear complementarity problem corresponding to M and q is to find $x \in \mathbb{R}^n$ such that

$$x \ge 0, \quad Mx + q \ge 0, \quad x^T (Mx + q) = 0.$$
 (1.1)

The solution set of (1.1) is denoted by $S_M(q)$. Thus, for a fixed M, S_M is a set-valued map from \mathbb{R}^n into \mathbb{R}^n_+ . It was known [1] that

$$\mathrm{Dom}S_M = \bigcup_{\alpha \subseteq I} K_\alpha, \tag{1.2}$$

where $I = \{1, 2, ..., n\}$ and K_{α} is the complementarity cone corresponding to the index set α which is defined by setting

$$K_{\alpha} := \left\{ \sum_{i \in \alpha} \lambda_i (-M^i) + \sum_{j \in I \setminus \alpha} \mu_j e_j \mid \lambda_i \ge 0, i \in \alpha; \ \mu_j \ge 0, j \in I \setminus \alpha \right\}, \quad (1.3)$$

with M^i standing for the i^{th} column vector in M and e_j being the j^{th} unit vector in \mathbb{R}^n .

In Sec. 3 we shall prove that, for any $M \in \mathbb{R}^{n \times n}$ the solution map S_M is Lipschitz on its effective domain if and only if it is lower semicontinuous on the set. To this end, we first show that if S_M is lower semicontinuous on $\text{Dom}S_M$ then M is nondegenerate, and then, by utilizing results in [2,4] we deduce that in this case S_M is also Lipschitz continuous on $\text{Dom}S_M$.

From now on, let M be an $n \times n$ -matrix with elements $a_{ij} \in \mathbb{R}$, $1 \leq i, j \leq n$. For $\alpha \subseteq \{1, 2, \ldots, n\}$, let M_{α} denote the submatrix of M with the elements a_{ij} , $i, j \in \alpha$. The determinants of these matrices are called the principal minors of M. A matrix is said to be nondegenerate if all of the principal minors are nonzero. If at least one of the principal minors is zero then M is a degenerate matrix. For abbreviation, we write M_k instead of $M_{\{1,2,\ldots,k\}}$.

Recall that, a set-valued map F from \mathbb{R}^n into \mathbb{R}^n is said to be Lipschiptz on a subset $U \subset \mathbb{R}^n$ if there exists a constant number L such that

$$H(F(p), F(q)) \le L ||p-q||; \quad \forall p, q \in U,$$
 (1.4)

where H(.,.) denotes the Hausdorff distance. F is called lower semicontinuous (l.s.c. for short) at $\bar{q} \in \text{Dom}F$ if for any $\bar{x} \in F(\bar{q})$ and $\epsilon > 0$ there exists $\delta > 0$ such that $F(q) \cap B(\bar{x}, \epsilon) \neq \emptyset$ for all $q \in B(\bar{q}, \delta) \cap \text{Dom}F$. Or, equivalently, for any $\bar{x} \in F(\bar{q})$ and any sequence $(q^m) \subset \text{Dom}F$ converging to \bar{q} there exists a sequence (x^m) such that $x^m \in F(q^m)$ for each $m \in \mathbb{N}$ and $x^m \to \bar{x}$. Finally, F is said to be l.s.c. if it is l.s.c. at every point of DomF.

2. Lower Semicontinuity of S_M Implies Nondegeneracy of M

Theorem 2.1 below is one of the two main results of this paper. For the proof of that theorem we shall need the following lemma.

Lemma 2.1. Let $M \in \mathbb{R}^{n \times n}$. For every $n \ge k \ge 2$ and $k \ge l \ge 1$ there exists a vector $v = (v_1, v_2, \dots, v_k)^T \in \mathbb{R}^k$ such that

$$v_l = \det\left(M_{\{1,\dots,k\}\setminus\{l\}}\right) \tag{2.1}$$

and

$$v^T M_k = \det(M_k).e_l^T.$$
(2.2)

Proof. For each i = 1, ..., k we define v_i as the cofactor of a_{il} in the matrix M_k . By M_k^j we denote the *j*-th column vector of M_k . From the theory of determinants it follows that

$$v^T M_k^j = \begin{cases} 0 & \text{if } j \neq l, \\ \det(M_k) & \text{if } j = l. \end{cases}$$

Or, $v^T M_k = \det(M_k) e_l^T$. Besides, $v_l = \det(M_{\{1,\dots,k\}\setminus\{l\}})$ by definition. The proof is complete.

Theorem 2.1. For any $M \in \mathbb{R}^{n \times n}$, if $S_M(\cdot)$ is l.s.c. then M is nondegenerate.

Proof. We first consider the case n = 1. If M is degenerate then M = (0) and

Continuity Properties of Solution Map in Linear Complementarity Problems

$$S_{\mathcal{M}}(q) = \begin{cases} \mathbb{R}_+ & \text{if } q = 0, \\ 0 & \text{if } q > 0, \\ \emptyset & \text{if } q < 0. \end{cases}$$

So S_M is not l.s.c. at $q = 0 \in \text{Dom}S_M$.

Now, for the case $n \ge 2$, we suppose, by contrary, that S_M is l.s.c. and M is degenerate. Denote by M_{α} the singular submatrix of M having the property that all its proper principal minors are nonzero. Without loss of generality, we can assume that $\alpha = \{1, 2, \ldots, k\}, \ k \le n$. So, $\det(M_k) = 0$ and, if k > 1, $\det(M_{\{1,\ldots,k\}\setminus\{l\}}) \ne 0$ for all $l \in \{1, \ldots, k\}$.

If k = 1 then $a_{11} = 0$. Choose $\overline{x} := (1, 0, \dots, 0)^T \in \mathbb{R}^n$ and, for each $m \in N$, set

$$\bar{q} := \begin{pmatrix} 0 \\ r \\ \vdots \\ r \end{pmatrix} \in \mathbb{R}^n, \quad q^m := \begin{pmatrix} \frac{1}{m} \\ r \\ \vdots \\ r \end{pmatrix} \in \mathbb{R}^n, \tag{2.3}$$

where $r := \max\{|a_{21}|, |a_{31}|, \ldots, |a_{n1}|\} + 1 \ge 1$. It is not difficult to verify that $\bar{x} \in S_M(\bar{q}), 0 \in S_M(q^m)$ for every $m \in N$. So $\bar{q} \in \text{Dom}S_M$ and $q^m \in \text{Dom}S_M$ for every $m \in N$. Furthermore, $q^m \to \bar{q}$. By the lower semicontinuity of $S_M(.)$ there exists a sequence (x^m) satisfying $x^m \in S_M(q^m)$ for all $m \in N$ and

$$\lim_{m \to \infty} x^m = \bar{x} = (1, 0, \dots, 0)^T.$$
(2.4)

We have

$$\lim_{m \to \infty} (Mx^m + q^m) = M\bar{x} + \bar{q} = \begin{pmatrix} 0 \\ a_{21} + r \\ \vdots \\ a_{n1} + r \end{pmatrix} \ge \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix}.$$
 (2.5)

It follows from (2.4) and (2.5) that for some m_0 large enough we have

$$(Mx^{m_0} + q^{m_0})_j > 0; \quad \forall j \ge 2,$$

$$(2.6)$$

Since $x^{m_0} \in S_M(q^{m_0})$, from (2.6) we obtain

$$\begin{cases} x_j^{m_0} = 0; \quad \forall j \ge 2, \\ (Mx^{m_0} + q^{m_0})_1 = 0. \end{cases}$$
(2.7)

Using the first property in (2.7) and the assumption $a_{11} = 0$, one has

$$(Mx^{m_0} + q^{m_0})_1 = \sum_{j=1}^n a_{1j}x_j^{m_0} + q_1^{m_0} = \frac{1}{m_0} > 0.$$

This contradicts the second property in (2.7).

Now assume that k > 1. Since M_k is singular, k column vectors of M_k are linearly dependent. By Lemma 2.1 in [2] we can find $\lambda_1, \ldots, \lambda_k \ge 0$ such that at least one of them equals zero and

Huynh The Phung

$$\sum_{j=1}^{k} M_{k}^{j} = \sum_{j=1}^{k} \lambda_{j} M_{k}^{j}.$$
 (2.8)

Since all the columns of M_k have the same role in the sense that $M_{\{1,...,k\}\setminus\{l\}}$ is nonsingular for all $l \in \{1,...,k\}$, without loss of generality we can assume that $\lambda_k = 0$ and (2.8) can be rewritten as follows

$$\sum_{j=1}^{k} a_{ij} = \sum_{j=1}^{k-1} \lambda_j a_{ij}; \quad \forall i = 1, \dots, k.$$
(2.9)

Now let $\bar{x}, x', \bar{q}, q^m \ (m \in N)$ be the vectors in \mathbb{R}^n defined by

$$\bar{x} := \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \\ (k^{\text{th}}) \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad x' := \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_{k-1} \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad (2.10)$$

$$\bar{q} := \begin{pmatrix} -\sum_{j=1}^{k} a_{1j} \\ \vdots \\ -\sum_{j=1}^{k} a_{kj} \\ \vdots \\ r \end{pmatrix}, \quad q^m := \bar{q} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{1}{m} \\ (k^{th}) \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad (2.11)$$

where

$$r := \max\left\{ \left| \sum_{j=1}^{k} a_{k+1,j} \right|, \dots, \left| \sum_{j=1}^{k} a_{nj} \right|, \left| \sum_{j=1}^{k-1} \lambda_j a_{k+1,j} \right|, \dots, \left| \sum_{j=1}^{k-1} \lambda_j a_{nj} \right| \right\} + 1.$$

Then

$$M\bar{x} + \bar{q} = \begin{pmatrix} \sum_{j=1}^{k} a_{1j} \\ \sum_{j=1}^{k} a_{2j} \\ \vdots \\ \sum_{j=1}^{k} a_{nj} \end{pmatrix} + \bar{q} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \sum_{j=1}^{k} a_{k+1,j} + r \\ \vdots \\ \sum_{j=1}^{k} a_{nj} + r \end{pmatrix} \ge \begin{pmatrix} 0 \\ \vdots \\ 0 \\ (k^{th}) \\ 1 \\ \vdots \end{pmatrix}. \quad (2.12)$$

Using (2.9)-(2.11), we obtain

Continuity Properties of Solution Map in Linear Complementarity Problems

$$Mx' + q^{m} = \begin{pmatrix} \sum_{j=1}^{k-1} \lambda_{j} a_{1j} \\ \sum_{j=1}^{k-1} \lambda_{j} a_{2j} \\ \vdots \\ \sum_{j=1}^{k-1} \lambda_{j} a_{nj} \end{pmatrix} + q^{m}$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{1}{m} \\ \sum_{j=1}^{k-1} \lambda_{j} a_{k+1,j} + r \\ \vdots \\ \sum_{i=1}^{k-1} \lambda_{j} a_{nj} + r \end{pmatrix} \ge \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{1}{m} & (k^{th}) \\ 1 \\ \vdots \\ 1 \end{pmatrix}. \quad (2.13)$$

Combining (2.12) and (2.13) with (2.10) it implies that $\bar{x} \in S_M(\bar{q})$ and $x' \in S_M(q^m)$; $\forall m \in N$. Furthermore, $q^m \longrightarrow \bar{q}$ as $m \longrightarrow \infty$. By the lower semicontinuity of S_M , there exists a sequence (x^m) converging to \bar{x} and $x^m \in S_M(q^m)$, $m \in N$. Since $x^m \longrightarrow \bar{x}$ and $Mx^m + q^m \longrightarrow M\bar{x} + \bar{q}$, from (2.10) and (2.12) it follows that there exists m_0 large enough such that

$$\begin{cases} x_i^{m_0} > 0, & \forall i = 1, \dots, k, \\ (Mx^{m_0} + q^{m_0})_j > 0; & \forall j = k+1, \dots, n. \end{cases}$$
(2.14)

Since $x^{m_0} \in S_M(q^{m_0})$, (2.14) implies

$$\begin{cases} (Mx^{m_0} + q^{m_0})_i = 0; & \forall i = 1, \dots, k, \\ x_j^{m_0} = 0; & \forall j = k+1, \dots, n. \end{cases}$$
(2.15)

Thus, by setting $z := Mx^{m_0} + q^{m_0}$ one gets

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ z_{k+1} \\ \vdots \\ z_n \end{pmatrix} = z = M x^{m_0} + q^{m_0}$$
$$= M \begin{pmatrix} x_1^{m_0} \\ \vdots \\ x_k^{m_0} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} -\sum_{j=1}^k a_{1_j} \\ \vdots \\ -\sum_{j=1}^k c_{k_j} \\ r \\ \vdots \\ r \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{1}{m_0} & (k^{th}) \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
(2.16)

Noting that M_k^j is the jth column vector of M_k , one derives from (2.16) that

Huynh The Phung

$$\sum_{j=1}^{k} x_{j}^{m_{0}} M_{k}^{j} - \sum_{j=1}^{k} M_{k}^{j} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{1}{m_{0}} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^{k}.$$
(2.17)

By virtue of Lemma 2.1 we can find $v = (v_1, \ldots, v_k)^T \in \mathbb{R}^k$ satisfying

$$v^T M_k = (0, \dots, 0)^T \in \mathbb{R}^k$$
(2.18)

and

$$v_k = det(M_{k-1}).$$
 (2.19)

Taking the scalar product of both sides of the equality in (2.17) with v we have

$$\sum_{j=1}^{k} (x_j^{m_0} - 1) v^T M_k^j + \frac{1}{m_0} v_k = 0.$$

This together with (2.18) gives $det(M_{k-1}) = v_k = 0$, a contradiction with the definition of M_k . So M is nondegenerate and the proof is complete.

3. Equivalence Between the Two Continuity Properties

The next theorem is the second main result of this paper.

Theorem 3.1. Let $M \in \mathbb{R}^{n \times n}$. Then S_M is Lipschitz on $\text{Dom}S_M$ if and only if it is lower semicontinuous.

Proof. Obviously, we need only verify the sufficient condition. Assume that S_M is l.s.c. on $\text{Dom}S_M$. By Theorem 2.1 M is nondegenerate, and hence, by [1] $S_M(q)$ is a finite set for every $q \in \text{Dom}S_M$. Besides, by virtue of [4, Proposition 1], S_M is uniformly locally upper Lipschitz on $\text{Dom}S_M$. That is, with a certain positive number $\lambda > 0$, for all $\bar{q} \in \text{Dom}S_M$ there exists $\delta(\bar{q}) > 0$ such that

$$S_M(q) \subset S_M(\bar{q}) + \lambda ||q - \bar{q}||B(0,1); \quad \forall q \in B(\bar{q}, \delta(\bar{q})).$$

$$(3.1)$$

The proof of the theorem now can be divided into three lemmas.

Lemma 3.1. For any $\bar{q} \in \text{Dom}S_M$ there exists $\eta > 0$ such that

$$H\left(S_M(q), S_M(\bar{q})\right) \le \lambda ||q - \bar{q}||; \quad \forall q \in B(\bar{q}, \eta) \cap \text{Dom}S_M.$$
(3.2)

Proof. Take any $\bar{q} \in \text{Dom}S_M$ and assume that $S_M(\bar{q}) = \{x^1, \ldots, x^k\}$. We set

$$:= \min\left\{ \|x^{i} - x^{j}\|, 1 \le i < j \le k \right\} > 0.$$
(3.3)

Since S_M is l.s.c. at \bar{q} and $S_M(\bar{q})$ is finite, there exists $\delta_1 > 0$ such that

$$S_M(q) \cap B\left(x^i, \frac{\epsilon}{2}\right) \neq \emptyset; \quad \forall q \in B(\bar{q}, \delta_1) \cap \text{Dom}S_M, \ \forall i = 1, 2, \dots, k.$$
 (3.4)

Continuity Properties of Solution Map in Linear Complementarity Problems

We now choose $\eta := \min \{\delta_1, \delta(\bar{q}), \epsilon/2\lambda\}$. Then for all $q \in B(\bar{q}, \eta) \cap \text{Dom}S_M$ both (3.1) and (3.4) hold. For every $x^i \in S_M(\bar{q})$, by (3.4) there exists v such that

$$v \in S_M(q)$$
 and $||v - x^i|| < \frac{\epsilon}{2}$. (3.5)

By the definition of ϵ it follows that

$$v \notin x^j + \frac{\epsilon}{2}B(0,1), \quad \forall j \neq i,$$
(3.6)

hence, noting that $\lambda ||q - \bar{q}|| < \lambda \eta \leq \epsilon/2$ we have

$$v \notin x^{j} + \lambda ||q - \bar{q}||B(0,1), \quad \forall j \neq i.$$
(3.7)

On the other hand, from (3.1) it follows that

$$v \in S_M(q) \subset \bigcup_{j=1}^{\kappa} (x^j + \lambda ||q - \bar{q}|| B(0, 1)).$$
 (3.8)

Combining this with (3.7) we get

$$y \in x^i + \lambda ||q - \overline{q}|| B(0,1),$$

or,

$$x^i \in v + \lambda ||q - \bar{q}||B(0,1) \subset S_M(q) + \lambda ||q - \bar{q}||B(0,1).$$

Since this inclusion holds for every $x^i \in S_M(\bar{q})$, it follows that

$$S_M(\bar{q}) \subset S_M(q) + \lambda \|q - \bar{q}\|B(0,1)$$

which together with (3.1) yields (3.2).

Lemma 3.2. For all $p, q \in \text{Dom}S_M$ such that $[p,q] \subset \text{Dom}S_M$ we have

$$H(S_M(p), S_M(q)) \le \lambda ||p-q||,$$
 (3.9)

where [p,q] denotes the segment $co\{p,q\}$.

Proof. This lemma can be derived from Lemma 3.1 and the compactness of the segment [p, q].

Lemma 3.3. There exists $L \ge 0$ such that

$$H(S_M(p), S_M(q)) \le L ||p-q||, \quad \forall p, q \in \text{Dom}S_M.$$

From this lemma the theorem follows.

Proof. Applying [2, Corollary 2.1] for the class of polyhedral convex cones $\{K_{\alpha}, \alpha \subseteq I\}$ there exists $\gamma > 0$ such that for all $p \in K_{\alpha}, q \in K_{\beta}$ with $\alpha \subseteq I$, $\beta \subseteq I$, there exists $u \in K_{\alpha} \cap K_{\beta}$ satisfying

$$||p-q|| \ge \gamma(||p-u|| + ||q-u||).$$
(3.10)

Now we set $L := \lambda/\gamma$. For all $p, q \in \text{Dom}S_M$ there are $\alpha \subseteq I$ and $\beta \subseteq I$ such that $p \in K_{\alpha}$ and $q \in K_{\beta}$. Denoting $u \in K_{\alpha} \cap K_{\beta}$ the vector satisfying (3.10) we have

 $[u,p] \subset K_{\alpha} \subset \text{Dom}S_{M}, \ [u,q] \subset K_{\beta} \subset \text{Dom}S_{M}.$ From (3.9) one gets

$$H(S_M(p), S_M(u)) \leq \lambda ||u - p||,$$

$$H(S_M(u), S_M(q)) \le \lambda ||u-q||.$$

Combining these two inequalities we obtain

$$H(S_{M}(p), S_{M}(q)) \leq H(S_{M}(p), S_{M}(u)) + H(S_{M}(u), S_{M}(q))$$

$$\leq \lambda(||u - p|| + ||u - q||)$$

$$\leq \frac{\lambda}{\gamma} ||p - q|| = L ||p - q||.$$

The proof is complete.

References

- 1. K.G. Murty, On the number of solutions to the complementarity problems and spanning properties of complementarity cones, Linear Algebra and its Applications 5 (1972) 65-108.
- 2. H.T. Phung, On the locally uniform openness of polyhedral sets, Acta Math. Vietnam. 25 (2000) 273-284.
- 3. H. T. Phung, Solution to a question by J.-S. Pang, Preprint No. 18 (1995), Institute of Math., Vietnam.
- 4. S. M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Program. Study 14 (1981) 206-214.