Milnor Number of Positive Polynomials

Ha Huy Vui
Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam

Received November 12, 2001

Abstract. We prove that if a positive polyomial is "good" at infinity, then its total Milnor number must be odd.

Let $f \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$ be a polynomial function. Let $\left(\frac{\partial f}{\partial z_{1}}, \frac{\partial f}{\partial z_{2}}, \cdots, \frac{\partial f}{\partial z_{n}}\right)$ be the ideal generated by the partial derivations of f. The total Milnor number of f, denoted by $\mu_{\text {total }}(f)$, is defined by

$$
\mu_{\text {total }}(f):=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]}{\left(\frac{\partial f}{\partial z_{1}}, \frac{\partial f}{\partial z_{2}}, \cdots, \frac{\partial f}{\partial z_{n}}\right)}
$$

This number is finite if and only if all critical points of f are isolated. In this case, it is the sum of local Milnor numbers at all singular points. The total Milnor number can be interpreted as the degree of the map

$$
\mathbb{S}_{r}^{2 n-1} \rightarrow \mathbb{S}_{1}^{2 n-1}, \quad z \mapsto \frac{\operatorname{grad} f(z)}{\|\operatorname{grad} f(z)\|}
$$

where $\mathbb{S}_{r}^{2 n-1}=\partial B_{r}$ for a sufficient large ball B_{r} such that all the singular points of f are contained in B_{r}.

In this note, we prove the following
Theorem. Let $f \in \mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]$. Suppose that
(i) All the coefficients of f are real numbers;
(ii) The restriction of f on \mathbb{R}^{n} is bounded from below.
(iii) There is $r_{0} \gg 1, \delta>0$ such that

$$
\|\operatorname{grad} f(z)\| \geq \delta
$$

for $z \in \mathbb{C}^{n} \backslash B_{r_{0}}$. Then

$$
\mu_{\text {total }}(f)=1 \bmod 2
$$

Proof. (1) We show that the conditions (ii) and (iii) imply that the restriction of f on \mathbb{R}^{n} is proper.

Put

$$
V=\left\{x \in \mathbb{R}^{n} \mid f(x)=\min _{\|y\|=\|x\|, y \in \mathbb{R}^{n}} f(y)\right\} .
$$

It is not hard to see that V is an unbounded semi-algebraic set. A version at infinity of the Curve Selection Lemma [4] gives the existence of a meromorphic real curve

$$
\theta:(0, \epsilon] \rightarrow \mathbb{R}^{n}
$$

such that $\theta(t) \in V$ for $t>0$ and $\|\theta(0)\|=\infty$.
It is easy to see that $\operatorname{grad} f(\theta(t))=\lambda(t) \theta(t)$ for some $\lambda(t) \in \mathbb{R}$.
Let

$$
\begin{aligned}
f(\theta(t)) & =a t^{\alpha}+\text { terms of higher degrees } \\
\theta(t) & =b t^{\beta}+\text { terms of higher degrees. }
\end{aligned}
$$

One has

$$
\frac{d}{d t} f(\theta(t))=\left\langle\frac{d \theta}{d t}, \operatorname{grad} f(\theta(t))\right\rangle=\lambda(t)\left\langle\frac{d \theta}{d t}, \theta(t)\right\rangle
$$

Hence

$$
2 \frac{d}{d t} f(\theta(t))=\lambda(t) \frac{d}{d t}\|\theta(t)\|^{2}
$$

This implies

$$
\left|2 \frac{d}{d t} f(\theta(t))\right|=\frac{\|\operatorname{grad} f(\theta(t))\|}{\|\theta(t)\|} \frac{d}{d t}\left[\|\theta(t)\|^{2}\right] ;
$$

or

$$
2\left|a t^{\alpha-1}+\cdots\right| \geq \delta\|b\| t^{\beta-1}+\cdots
$$

Thus

$$
\alpha<\beta<0
$$

So $|f(\theta(t))| \rightarrow \infty$ as $t \rightarrow 0$. Since the restriction of f on \mathbb{R}^{n} is bounded from below, $f(\theta(t)) \rightarrow+\infty$ as $t \rightarrow 0$. From this we see that if $\left\{a_{k}\right\} \subset \mathbb{R}^{n},\left\|a_{k}\right\| \rightarrow \infty$, then $f\left(a_{k}\right) \rightarrow+\infty$; i.e., $\left.f\right|_{\mathbb{R}^{n}}$ is proper.
(2) By the index of f we means the index of the restriction of f on \mathbb{R}^{n}; i.e., the index of the gradient field of f on $\mathbb{R}^{n}[1]$. We denote it by $i(f)$. We will show that if the restriction of f on \mathbb{R}^{n} is proper and bounded from below, then $i(f)=1$.

Put

$$
\begin{aligned}
& D_{1}=\left\{x \in \mathbb{R}^{n} \left\lvert\, \operatorname{rank}\left(\begin{array}{cccc}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}} \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \leq 1\right.\right\}, \\
& D_{2}=:\left\{x \in \mathbb{R}^{n} \mid\langle x, \operatorname{grad} f(x)\rangle<0\right\} .
\end{aligned}
$$

Then the set

$$
D=D_{1} \cap D_{2}=\left\{x \in \mathbb{R}^{n} \mid \exists \lambda<0 \text { such that } \operatorname{grad} f(x)=\lambda x\right\}
$$

is semi-algebraic.
We will show that D is bounded. Assume that it is not the case. Let $\eta(t)$ be a meromorphic curve, $\eta(t) \in D$ for $t \in(0, \epsilon]$ and $\|\eta(0)\|=\infty$.

Let

$$
\|\eta(t)\|=c t^{\kappa}+\cdots
$$

where $\kappa<0$ and $c>0$.
As in the proof of (1),

$$
2 \frac{d}{d t} f(\eta(t))=\lambda(t) \frac{d}{d t}\left[\|\eta(t)\|^{2}\right]=2 \kappa c \lambda(t)\left(t^{2 \kappa-1}+\cdots\right)>0
$$

for $t>0, t$ close to 0 . Thus, $f(\eta(t))$ is monotonouslly deacreasing as $t \rightarrow 0^{+}$. Since f is proper, $f(\eta(t)) \rightarrow-\infty$. This contradicts the fact that the restriction of f on \mathbb{R}^{n} is bounded from below.

Using the boundedness of D, it is easy to show that the map $\frac{\operatorname{grad} f}{\|\operatorname{grad} f\|}$ is homotopic to the indentify map on the sphere $\mathbb{S}_{r} \subset \mathbb{R}^{n}$ with sufficiently large r. Hence $i(f)=1$.
(3) Let r_{0} and δ be as in the condition (iii) of the theorem. Let $a=$ $\left(a_{1}, a_{2}, \ldots\right.$,
$\left.a_{n}\right) \in \mathbb{R}^{n}$ be a real regular value of the map $\operatorname{grad} f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. All the singular points of the polynomial $f_{a}(z)=f(z)+\sum_{i=1}^{n} a_{i} z_{i}$ are non-degenerated. We can assume that $\|a\|<\delta / 2$. It is easy to check that the maps $\frac{\operatorname{grad} f}{\|\operatorname{lgad} f\|}$ and $\frac{\operatorname{grad} f_{a}}{\left\|\operatorname{grad} f_{a}\right\|}$ are homotopic, here these maps are considered both in \mathbb{C}^{n} and \mathbb{R}^{n}. Thus

$$
\mu_{\text {total }}(f)=\mu_{\text {total }}\left(f_{a}\right), \quad i(f)=i\left(f_{a}\right)=1
$$

Since the coefficients of f are all real, the number of nonreal singular points of f_{a} is even. Thus

$$
\mu_{\text {total }}\left(f_{a}\right)=k \bmod 2
$$

where k is the number of real singular points of f_{a}. Let them be $A_{1}, A_{2}, \ldots, A_{k} \in$ \mathbb{R}^{n} and let $i_{A_{i}}(f)$ be the index of f at A_{i}. (Here f is considered as a map from \mathbb{R}^{n} to \mathbb{R}.) Since $A_{i}, i=1,2, \ldots, k$ is nondegenerated, $i_{A_{i}}\left(f_{a}\right)=+1$ or -1 .

We have

$$
1=i\left(f_{a}\right)=\sum_{i=1}^{k}(\pm 1)
$$

It follows that $k=1 \bmod 2$. Therefore

$$
\mu_{\text {total }}(f)=\mu_{\text {total }}\left(f_{a}\right)=1 \bmod 2
$$

The theorem is proved.
Remark. The condition (iii) says that, in some sense f has no singularities at infinity. The following example shows that this condition cannot be omitted.

Let

$$
\begin{align*}
& f_{1}(x, y)=\left(x^{2} y-x-1\right)^{2}+\left(x^{2}-1\right)^{2} \tag{2}\\
& f_{2}(x, y)=\left(x^{2} y+x+1\right)^{2}+x^{2}+2
\end{align*}
$$

We have $\mu_{\text {total }}\left(f_{1}\right)=2$ and $\mu_{\text {total }}\left(f_{2}\right)=0$. Using Theorem B of [3], it is easy to see that f_{1} has 0 and f_{2} has 2 as critical values, corresponding to the singularities at infinity.

References

1. A. Durfee, N. Kronenfeld, H. Munson, J. Roy, and I. Westby, Counting critical points of a real polynomial in two variables, Amer. Math. Monthly 100 (1993) 255-271.
2. A. Durfee, The index of $\operatorname{grad} f(x, y)$, Topology. 37 (1998) 1339-1361.
3. H. V. Ha, Infimum of polynomials and singularities at infinity, Nonconvex Optimization and Its Application 53 (2001) 187-204
4. A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992) 323-335.
