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Abstract. We prove that if a positive polyomial is “good” at infinity, then its total

Milnor number must be odd.

Let f ∈ C[z1, z2, . . . , zn] be a polynomial function. Let
(

∂f
∂z1

, ∂f
∂z2

, · · · , ∂f
∂zn

)
be

the ideal generated by the partial derivations of f. The total Milnor number of
f , denoted by μtotal(f), is defined by

μtotal(f) := dimC

C[z1, z2, . . . , zn](
∂f
∂z1

, ∂f
∂z2

, · · · , ∂f
∂zn

) .

This number is finite if and only if all critical points of f are isolated. In this
case, it is the sum of local Milnor numbers at all singular points. The total
Milnor number can be interpreted as the degree of the map

S
2n−1
r → S

2n−1
1 , z �→ gradf(z)

‖gradf(z)‖ ,

where S2n−1
r = ∂Br for a sufficient large ball Br such that all the singular points

of f are contained in Br.

In this note, we prove the following

Theorem. Let f ∈ C[z1, z2, . . . , zn]. Suppose that
(i) All the coefficients of f are real numbers;
(ii) The restriction of f on Rn is bounded from below.
(iii) There is r0 � 1, δ > 0 such that

‖gradf(z)‖ ≥ δ

for z ∈ Cn \ Br0 . Then

μtotal(f) = 1 mod 2.
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Proof. (1) We show that the conditions (ii) and (iii) imply that the restriction
of f on Rn is proper.

Put
V = {x ∈ R

n | f(x) = min
‖y‖=‖x‖,y∈Rn

f(y)}.

It is not hard to see that V is an unbounded semi-algebraic set. A version at
infinity of the Curve Selection Lemma [4] gives the existence of a meromorphic
real curve

θ : (0, ε] → R
n

such that θ(t) ∈ V for t > 0 and ‖θ(0)‖ = ∞.
It is easy to see that gradf(θ(t)) = λ(t)θ(t) for some λ(t) ∈ R.
Let

f(θ(t)) = atα + terms of higher degrees,

θ(t) = btβ + terms of higher degrees.

One has
d

dt
f(θ(t)) =

〈dθ

dt
, gradf(θ(t))

〉
= λ(t)

〈dθ

dt
, θ(t)

〉
.

Hence
2

d

dt
f(θ(t)) = λ(t)

d

dt
‖θ(t)‖2.

This implies ∣∣∣2 d

dt
f(θ(t))

∣∣∣ =
‖gradf(θ(t))‖

‖θ(t)‖
d

dt
[‖θ(t)‖2];

or
2|atα−1 + · · · | ≥ δ‖b‖tβ−1 + · · · .

Thus
α < β < 0.

So |f(θ(t))| → ∞ as t → 0. Since the restriction of f on Rn is bounded from
below, f(θ(t)) → +∞ as t → 0. From this we see that if {ak} ⊂ Rn, ‖ak‖ → ∞,
then f(ak) → +∞; i.e., f |Rn is proper.

(2) By the index of f we means the index of the restriction of f on Rn; i.e.,
the index of the gradient field of f on Rn [1]. We denote it by i(f). We will
show that if the restriction of f on Rn is proper and bounded from below, then
i(f) = 1.

Put

D1 =
{
x ∈ R

n | rank
(

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

x1 x2 · · · xn

)
≤ 1

}
,

D2 = : {x ∈ R
n | 〈x, gradf(x)〉 < 0}.

Then the set

D = D1 ∩ D2 = {x ∈ R
n | ∃λ < 0 such that gradf(x) = λx}

is semi-algebraic.
We will show that D is bounded. Assume that it is not the case. Let η(t)

be a meromorphic curve, η(t) ∈ D for t ∈ (0, ε] and ‖η(0)‖ = ∞.
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Let
‖η(t)‖ = ctκ + · · · ,

where κ < 0 and c > 0.
As in the proof of (1),

2
d

dt
f(η(t)) = λ(t)

d

dt
[‖η(t)‖2] = 2κcλ(t)(t2κ−1 + · · · ) > 0

for t > 0, t close to 0. Thus, f(η(t)) is monotonouslly deacreasing as t → 0+.
Since f is proper, f(η(t)) → −∞. This contradicts the fact that the restriction
of f on Rn is bounded from below.

Using the boundedness of D, it is easy to show that the map gradf
‖gradf‖ is

homotopic to the indentify map on the sphere Sr ⊂ Rn with sufficiently large
r. Hence i(f) = 1.

(3) Let r0 and δ be as in the condition (iii) of the theorem. Let a =
(a1, a2, . . . ,
an) ∈ Rn be a real regular value of the map gradf : Cn → Cn. All the singular
points of the polynomial fa(z) = f(z)+

∑n
i=1 aizi are non-degenerated. We can

assume that ‖a‖ < δ/2. It is easy to check that the maps gradf
‖gradf‖ and gradfa

‖gradfa‖
are homotopic, here these maps are considered both in Cn and Rn. Thus

μtotal(f) = μtotal(fa), i(f) = i(fa) = 1.

Since the coefficients of f are all real, the number of nonreal singular points of
fa is even. Thus

μtotal(fa) = k mod 2,

where k is the number of real singular points of fa. Let them be A1, A2, . . . , Ak ∈
Rn and let iAi(f) be the index of f at Ai. (Here f is considered as a map from
Rn to R.) Since Ai, i = 1, 2, . . . , k is nondegenerated, iAi(fa) = +1 or −1.

We have

1 = i(fa) =
k∑

i=1

(±1).

It follows that k = 1 mod 2. Therefore

μtotal(f) = μtotal(fa) = 1 mod 2.

The theorem is proved. �

Remark. The condition (iii) says that, in some sense f has no singularities at
infinity. The following example shows that this condition cannot be omitted.

Let
f1(x, y) = (x2y − x − 1)2 + (x2 − 1)2, ([2])

f2(x, y) = (x2y + x + 1)2 + x2 + 2.

We have μtotal(f1) = 2 and μtotal(f2) = 0. Using Theorem B of [3], it is
easy to see that f1 has 0 and f2 has 2 as critical values, corresponding to the
singularities at infinity.
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