Short Communication

Parametrical Characterizations for Pseudo and Sequentially Cohen-Macaulay Modules

Nguyen Tu Cuong and Nguyen Thai Hoa

Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam

Received December 25, 2001

1. Introduction

Throughout this note, let (A, \mathfrak{m}) be a commutative Noetherian and M a finitely generated A-module with $\dim_A M = d$. We denote by $Q_M(\underline{x})$ the submodule of M defined by

$$Q_M(\underline{x}) = \bigcup_{t > 0} \left((x_1^{t+1}, \ldots, x_d^{t+1})M : x_1^t \cdots x_d^t \right),$$

where $\underline{x} = (x_1, \ldots, x_d)$ is a system of parameters on M. Consider the difference

$$J_{M, x}(\underline{n}) = n_1 \cdots n_d c(\underline{x}; M) - \ell_A \left(M/Q_M(\underline{x}(\underline{n})) \right)$$

as a function in \underline{n}, where $\underline{x}(\underline{n}) = (x_1^{n_1}, \ldots, x_d^{n_d})$ and $\underline{n} = (n_1, \ldots, n_d)$ is a d-tuple of positive integers. Then it is known (see [5]) that in general $J_{M, x}(\underline{n})$ is not a polynomial for enough large \underline{n}. But, it was proved in [4] that the last degree of all polynomials in \underline{n} bounding above the function $J_{M, x}(\underline{n})$ is independent of the choice of \underline{x}. This invariant of the module M is denoted by $\text{pf}(M)$. Following [5], a module M is called a pseudo Cohen-Macaulay module if $\text{pf}(M) = -\infty$, where we stipulate that the degree of the zero polynomial equals $-\infty$. Then it is clear that a Cohen-Macaulay module is pseudo Cohen-Macaulay. Moreover a sequentially Cohen-Macaulay module, which is defined by Stanley [10] for graded modules and by Schenzel for the non graded case, is also a pseudo Cohen-Macaulay module (see [5]).

The purpose of this short note is to characterize pseudo Cohen-Macaulay and sequentially Cohen-Macaulay of modules in terms of systems of parameters. The readers can find all detailed proofs for the results in this note in [6].
2. Pseudo Cohen-Macaulay Modules

Keep all notations as above, we begin with the following definition.

Definition 2.1 (see [5]). M is said to be a pseudo Cohen-Macaulay module if $pf(M) = -\infty$.

Remark 2.2.
(i). Let \hat{M} be the m-adic completion of M. We have $pf_A(M) = pf_A(\hat{M})$ (see [4]). Thus M is a pseudo Cohen-Macaulay A-module if and only if \hat{M} is a pseudo Cohen-Macaulay \hat{A}-module.
(ii). For a non-negative integer i, we set $D_i(M) = \text{Hom}_A(H^i_m(M); E)$ the Matlis’ dual of $H^i_m(M)$, where $E = E_A(A/m)$ is the injective hull of A/m. It is well-known that $D_i(M)$ is a finitely generated \hat{A}-module for all $i \geq 0$. It was proved in [3] that M is pseudo Cohen-Macaulay if either $D_i(M) = 0$ or $D_i(M)$ is a Cohen-Macaulay \hat{A}-module for all $i = 1, \ldots, d - 1$.
(iii). The notation $p = p(M)$ means the polynomial type of M (see [2]).

We have some properties of the pseudo Cohen-Macaulay modules as follows.

Proposition 2.3. Assume that M is a pseudo Cohen-Macaulay A-module with $\text{dim } M = d$. Then the following statements are true:
(i) For any $p \in \text{Supp } M$, then $\text{dim } A/p + \text{dim } M_p$ is either d or smaller than $p(M) + 1$.
(ii) We have $\text{depth } D_p(M) \geq \min\{2, p\}$.
(iii) M is a Cohen-Macaulay module if and only if depth $M > p(M)$.

Proposition 2.4. Let M be a pseudo Cohen-Macaulay A module with $\text{dim } M = d$. Assume that $p = p(M) > 0$ and for all $p \in \text{Supp } M \setminus \{m\}$, M_p is a pseudo Cohen-Macaulay module. Then for each $q \in \text{Supp } D_p(M) \setminus \{\hat{m}\}$, one of the following two statements are true:
(i) $\text{dim } M_q + \text{dim } A/q = d$.
(ii) $p(M_q) + \text{dim } A/q = p$ or $\text{dim } M_q + \text{dim } A/q = p$.

Following [2], a subset of an s.o.p. (x_1, \ldots, x_j) of M is called a reducing sequence if it holds: $x_i \notin p$ for all $p \in \text{Ass}(M/(x_1, \ldots, x_{i-1})M)$ with $\text{dim } A/p \geq d - i, i = 1, \ldots, j$. Note that if $\underline{x} = (x_1, \ldots, x_d)$ is an s.o.p on M and x_1, \ldots, x_{d-1} form a reducing sequence, then \underline{x} is just a reducing s.o.p which has been introduced in [1].

Definition 2.5. Let $\underline{x} = (x_1, \ldots, x_t)$ be a sequence of elements of m. We denote $M_i = M/(x_1, \ldots, x_i)M$ for all $i = 0, \ldots, t$. A sequence \underline{x} is called a pseudo-coregular sequence, if x_i is an $H^d_{\text{m}}(M_{i-1})$-coregular element for all $i = 1, \ldots, t$.

Using this notion, we can show some characterizations of the pseudo Cohen-Macaulay modules as follows.
Theorem 2.6. Let \((A, \mathfrak{m})\) be a commutative Noetherian local ring and \(M\) a finitely generated \(A\)-module with \(\dim M = d\). Then the following statements are equivalent.

(i) \(M\) is a pseudo Cohen-Macaulay module,
(ii) Any reducing s.o.p. on \(M\) is a pseudo-coregular sequence,
(iii) \(M\) has a reducing s.o.p. which is a pseudo-coregular sequence,
(iv) \(M\) has an s.o.p. which is a pseudo-coregular sequence.

Let \(\underline{x} = (x_1, \ldots, x_d)\) be an s.o.p on \(M\). Set
\[
M_i = M/(x_1, \ldots, x_i)M
\]
for all \(i = 0, \ldots, d\).

Theorem 2.7. Let \(M\) be a finitely generated \(A\)-module with \(\dim M = d\). Suppose that \(p = p(M) > 0\). Then the following statements are equivalent:

(i) \(M\) is a pseudo Cohen-Macaulay module,
(ii) \(H^i_{\mathfrak{m}}(M) = 0\) for all \(i = p + 1, \ldots, d - 1\) and there exists an s.o.p. \((x_1, \ldots, x_p)\) on \(M\) such that \(x_i\) is an \(H^{p-i+1}_{\mathfrak{m}}(M_{i-1})\)-coregular element for all \(i = 1, \ldots, p\).

3. Sequentially Cohen-Macaulay Modules

Let \(M\) be a finitely generated \(A\)-module with \(\dim A = d \geq 1\), where \((A, \mathfrak{m})\) is a Noether local ring. For integer \(0 \leq i \leq d\), let \(N_i\) denote the largest submodules of such that \(\dim N_i \leq i\). Because \(M\) is a Noetherian \(A\)-module, the submodules \(N_i\) of \(M\) are well-defined. Moreover it follows that \(N_{i-1} \subseteq N_i\) for all \(1 \leq i \leq d\). The increasing filtration \(M = \{N_i\}_{0 \leq i \leq d}\) of submodules of \(M\) is called the dimension filtration of \(M\) (see \([8, 2.1]\)).

Definition 3.1 (see \([8, 4.1]\)). A finitely generated \(A\)-module is called a sequentially Cohen-Macaulay module if \(N_i/N_{i-1}\) is either zero or an \(i\)-dimensional Cohen-Macaulay module for all \(0 \leq i \leq \dim A\).

Note that this definition has been first introduced by Stanley for modules (see \([10, \text{Chapter III, 2.9}]\)). Then, Schenzel extended it to finitely generated modules over Noetherian local rings (see \([8]\)).

We have a property of sequentially Cohen-Macaulay modules.

Proposition 3.1. Assume that \(M\) is a sequentially Cohen-Macaulay \(A\)-module with \(\dim A = d\). Then, we have either \(H^i_{\mathfrak{m}}(M) = 0\) or \(H^i_{\mathfrak{m}}(M)\) is a co-Cohen-Macaulay module for all \(0 \leq i \leq d\).

Suppose that \(A\) has a dualizing complex \(D_A\). Recall the notation in \([7]\):
\[
K^i(M) = H^{-i}(\text{Hom}_A(M, D_A)), \quad i \in \mathbb{Z}.
\]
Note that \(K^i(M) = 0\) for all \(i < 0\) or \(i > d\) and the \(K^i(M), i \in \mathbb{Z}\) are finitely generated \(A\)-modules.
We have a characterization of sequentially Cohen-Macaulay modules as follows.

Theorem 3.2. Let \((A, \mathfrak{m})\) be a Noetherian local ring. Suppose that \(A\) has a dualizing complex. Let \(M\) be a finitely generated \(A\)-module with \(\dim M = d\). Then the following statements are equivalent:

(i) \(M\) is a sequentially Cohen-Macaulay module,

(ii) Every s.o.p. \(\underline{x} = (x_1, \ldots, x_d)\) on \(M\) which is a filter regular sequence such that \(x_i\) is a regular element of \(K^j(M_{i-1})\) for all \(j = 1, \ldots, d - i\) and \(i = 1, \ldots, d - 1\),

(iii) There exists an s.o.p. \(\underline{x} = (x_1, \ldots, x_d)\) on \(M\) which is a filter regular sequence such that \(x_i\) is a regular element of \(K^j(M_{i-1})\) for all \(j = 1, \ldots, d - i\) and \(i = 1, \ldots, d - 1\),

(iv) There exists an s.o.p. \(\underline{x} = (x_1, \ldots, x_d)\) on \(M\) such that \(x_i\) is a regular element on \(K^j(M_{i-1})\) for all \(j = 1, \ldots, d - i\) and \(i = 1, \ldots, d - i\).

References

