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Abstract. In this paper, circumradii and diameter of sets are used to estimate the

distance between some subset S of a finite-dimensional normed space and any point

from conv S\S, which is applied to prove a fixed-point theorem for roughly contractive

mappings.

Let X be a normed linear space. For a bounded set S ⊂ X ,

rA(S) = inf
x∈A

sup
y∈S

‖x − y‖ and CA(S) =
{
x ∈ A : sup

y∈S
‖x − y‖ = rA(S)

}

are the relative radius and the relative center set of S with respect to A ⊂ X .
In particular, rX(S) is the absolute radius of S, and rconv S(S) is called its self-
radius, because rconv S(S) = rS(S) if S is convex.

In general, rX(S) and rconv S(S) may be different, and CX(S) ∩ convS may
be empty. For instance, let

S = {e1, e2, e3} ⊂ X = �3
3 with e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

(1)
Then, for μ =

√
2 − 1 ≈ 0.4142136, we have

rX(S) =
(
(1 − μ)3 + 2 μ3

)1/3 ≈ 0.7000991,

CX(S) = {yμ}, where yμ = μ (1, 1, 1),
(2)

and
rconv S(S) =

1
3

101/3 ≈ 0.7181449,

CconvS(S) = {y1/3}, where y1/3 =
1
3

(1, 1, 1),
(3)
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i.e., rX(S) < rconv S(S) and CX(S) ∩ convS = CX(S) ∩ convS = ∅.
In fact, due to Klee [6], rconv S(S) = rX(S) for all bounded S ⊂ X is equiva-

lent to X being two-dimensional or an inner-product space, and CX(S) intersects
convS for all bounded S ⊂ X is equivalent to X being two-dimensional or a
complete inner-product space. This classical result of Klee shows the role of
absolute radius and center set for characterizing normed linear spaces.

Let us now use the above circumradii to estimate the distance between a set
S and any point z ∈ convS \ S.

Proposition 1. Suppose that X is some two-dimensional normed space or some
Euclidean space, S ⊂ X, and z ∈ convS \ S. Then there exists s ∈ S such that

‖z − s‖ ≤ rX(S) = rconv S(S).

Proof. Due to Theorem 1 in [6], we have rX(S) = rconv S(S). Since z ∈ convS\S
there exists a set Sk = {x1, x2, . . . , xk} ⊂ S of k ≥ 2 linearly independent
points such that z ∈ ri (conv Sk), where riA denotes the relative interior of A.
It remains to verify

min
1≤i≤k

‖z − xi‖ ≤ rX(S). (4)

Obviously, it holds for k = 2 that

min
1≤i≤2

‖z − xi‖ ≤ 1
2
‖x1 − x2‖ = rconv {x1,x2}({x1, x2}) = rX({x1, x2}) ≤ rX(S).

Assume (4) for 2 ≤ k ≤ l, we are going to show that it also holds true for
k = l + 1. Take a center c from the set CX(Sk) ∩ convSk, which is non-empty
by Corollary 2 in [6]. Then

max
1≤i≤k

‖c − xi‖ ≤ rX(Sk) ≤ rX(S). (5)

If z = c then (4) follows from (5). Otherwise, since c ∈ convSk and z ∈
ri (convSk), the ray from c through z cuts the boundary convSk \ ri (convSk)
at some point

z′ ∈ convSk′ , where Sk′ = {xi1 , xi2 , . . . , xik′ } ⊂ Sk, k′ ≤ l.

If z′ ∈ Sk then z ∈ [c, z′] (where [c, z′] denotes the segment connecting c and z′)
implies

‖z − z′‖ ≤ ‖c − z′‖ ≤ rX(S).

If z′ �∈ Sk then we can choose Sk′ so that z′ ∈ ri (convSk′). By induction
assumption, there is some y ∈ Sk′ ⊂ S such that ‖z′ − y‖ ≤ rX(S). Therefore,
it follows from the convexity of the norm and (5) that

‖z − y‖ ≤ max{‖c− y‖, ‖z′ − y‖} ≤ rX(S),

which completes our proof. �



On Circumradii of Sets and Roughly Contractive Mappings 117

If dimX = n ≥ 3 and X is not a Euclidean space then it is not sure that,
for any bounded set S ⊂ X and any z ∈ convS \S, there exists s ∈ S satisfying

‖z − s‖ ≤ rX(S) or ‖z − s‖ ≤ rconv S(S).

To see this fact, let us consider example (1)–(2) again. For

λ = 3−1/3 rX(S), yλ+μ = (λ + μ) (1, 1, 1), and S′ = {e1, e2, e3, yλ+μ} (6)

we have y1/3 ∈ convS′ \ S′ but

‖yλ+μ − y1/3‖ = 31/3 (λ + μ − 1
3
) > rX(S) (7)

and
‖ei − y1/3‖ = rconv S(S) > rX(S), i = 1, 2, 3, (8)

while
rX(S) = rX(S′) = rconv S′S′. (9)

Thus, the assertion of Proposition 3.9 in [7] is only true for two-dimensional
normed spaces or for Euclidean spaces, and not for any normed spaces. But this
fact does not influence the main results stated there, which were only formulated
for Euclidean spaces.

Proposition 2. Suppose that X is some two-dimensional strictly convex normed
space or some Euclidean space, S = {x1, x2, . . . , xk} ⊂ X, and z ∈ convS \ S.
Then it holds either

min
1≤i≤k

‖z − xi‖ < rX(S) = rconv S(S) (10)

or
‖z − xi‖ = rX(S) = rconv S(S), i = 1, 2, . . . , k. (11)

Proof. We have to show that
min

1≤i≤k
‖z − xi‖ ≥ rX(S) (12)

implies (11). Let us prove by induction.
If dim S = 1, then all points of S lie in some segment, say for instance, in

the segment [x1, xk] connecting x1 and xk. Then rX(S) = (1/2) diamS =
(1/2)‖x1 − xk‖ and

min
1≤i≤k

‖z − xi‖ < rX(S) if z �= 1
2

(x1 + xk).

Therefore, (12) implies z = (1/2)(x1 + xk), max1≤i≤k ‖z − xi‖ ≤ rX(S), and
finally (11).

Assume now that the assertion is true for dim S ≤ l, and (12) holds for some
set S = {x1, x2, . . . , xk} with dim S = l + 1 ≥ 2. We have to show (11) now.
Due to Corollary 3 in [6], CX(S) is a non-empty subset of convS. If z ∈ CX(S)
then
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max
1≤i≤k

‖z − xi‖ ≤ rX(S)

and (12) yield immediately (11). Next, we show that z �∈ CX(S) is impossible
by considering two cases: z ∈ ri (convS) and z �∈ ri (convS).

If z ∈ ri (convS), then the ray L from c ∈ CX(S) through z �∈ CX(S) cuts the
boundary convS \ ri (convS) at z′ ∈ convSl for some Sl ⊂ S with dim Sl ≤ l.
Therefore,

‖c − y‖ ≤ rX(S) and ‖z − y‖ ≥ rX(S) (13)

imply by the convexity of norm that

‖z′ − y‖ ≥ rX(S) ≥ rX(Sl) for all y ∈ Sl.

This means at least L ∩ Sl = ∅, and therefore, the function g(x) = ‖x − y‖ is
strictly convex on L, for all y ∈ Sl. Consequently, (13) and z′ ∈ L \ [c, z] yield

‖z′ − y‖ > rX(S) ≥ rX(Sl) for all y ∈ Sl,

i.e., (12) is satisfied for z′ and Sl instead of z and S while (11) fails, which
conflicts with induction assumption.

If z �∈ ri (convS), then z ∈ convS \S implies z ∈ ri (convSl) for some Sl ⊂ S
with dim Sl ≤ l. The inequality

min
y∈Sl

‖z − y‖ ≥ rX(S) ≥ rX(Sl)

and dimSl ≤ l yield by induction assumption that

‖z − y‖ = rX(S) = rX(Sl), for all y ∈ Sl.

Therefore, for c ∈ CX(S) and z �∈ CX(S), it follows from the strict convexity of
the normed space X and

‖c − y‖ ≤ rX(S) = rX(Sl) for all y ∈ Sl

that ∥∥∥∥1
2
(c + z) − y

∥∥∥∥ < rX(Sl) for all y ∈ Sl,

which conflicts with the definition of rX(Sl). Hence, z �∈ CX(S) is also impossible
in case z �∈ ri (convS). �

The proof of the above proposition uses the fact that for such a space X ,
the absolute center c of any finite set S belongs to convS. It is no more true
for an arbitrary strictly convex normed space, as stated in Proposition 3.10 of
[7]. An example for this is given by (1)–(3) and (6)–(9), where it holds for
S′ = {e1, e2, e3, yλ+μ} and y1/3 ∈ convS′ \ S′

min{‖yλ+μ − y1/3‖, ‖e1 − y1/3‖, ‖e2 − y1/3‖, ‖e3 − y1/3‖} > rX(S′) = rconv S′S′.

We have seen that such distance estimates by using circumradii (as in Propo-
sitions 1–2) cannot be obtained for other finite-dimensional spaces. But we can
use the diameter
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diam S = sup
x,y∈S

‖x − y‖

to derive the following similar result.

Proposition 3. Let S be a bounded subset of some n-dimensional normed space
X and z ∈ convS \ S. Then there exists s ∈ S such that

‖z − s‖ ≤ n

n + 1
diamS. (14)

If this normed space is strictly convex and n ≥ 2 then

inf
s∈S

‖z − s‖ <
n

n + 1
diamS. (15)

Proof. By Carathéodory’s theorem [2], there is a set Sk = {x1, x2, . . . , xk} ⊂ S
of k ≤ n + 1 linearly independent points such that z ∈ ri (convSk). Obviously,
the function

f(x) =
k∑

i=1

fi(x), where fi(x) = ‖x − xi‖,

is convex. Moreover, if the normed space X is strictly convex and k ≥ 3 then
f is strictly convex, because for every line L in X there exists an xi ∈ Sk lying
outside of L which implies the strict convexity of fi on L. Therefore, it follows
from

f(xj) =
k∑

i=1

‖xj−xi‖ ≤ (k−1) max
1≤i≤k

‖xj−xi‖ ≤ (k−1) diamS for j = 1, 2, . . . , k

and z ∈ ri (convSk) that

min
1≤i≤k

‖z−xi‖ ≤ 1
k

f(z) ≤ 1
k

max
1≤j≤k

f(xj) ≤ k − 1
k

diam S ≤ n

n + 1
diam S, (16)

i.e., (14) holds for s ∈ Sk satisfying ‖z − s‖ = min1≤i≤k ‖z − xi‖.
Assume now that the normed space X is strictly convex and n ≥ 2. If k = 2

then (k − 1)/k = 1/2 < n/(n + 1) and (16) yield

min
1≤i≤k

‖z − xi‖ <
n

n + 1
diam S.

This strict inequality remains true if k ≥ 3 because f is strictly convex, and
therefore, z ∈ ri (convSk) implies f(z) < max1≤j≤k f(xj). Hence, in both cases,
(15) follows from infs∈S ‖z − s‖ ≤ min1≤i≤k ‖z − xi‖. �

Propositions 1–3 can be applied for proving the following fixed-point theorem
for so-called r-roughly k-contractive mappings T : M → M defined by

‖Tx− Ty‖ ≤ k ‖x − y‖ + r for all x, y ∈ M, (17)

where k ∈ (0, 1) and r > 0 are given.
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Theorem 4. Let T : M → M be an r-roughly k-contractive mapping on a closed
and convex subset M of some n-dimensional normed space X. If dim X = 1 then

∃x∗ ∈ M : ‖x∗ − Tx∗‖ ≤ 1
2

r. (18)

If dim X ≥ 2 then
∀ε > 0 ∃x∗ ∈ M : ‖x∗ − Tx∗‖ <

n

n + 1
r + ε. (19)

If, in addition, the normed space X is strictly convex then

∃x∗ ∈ M : ‖x∗ − Tx∗‖ <
n

n + 1
r, (20)

or if X is the n-dimensional Euclidean space then

∃x∗ ∈ M : ‖x∗ − Tx∗‖ ≤
√

n

2(n + 1)
r. (21)

Proof. (a) Fix an arbitrary point x0 ∈ M and define

B̂ = {x ∈ X : ‖x − x0‖ ≤ r̂}, where r̂ =
r + ‖x0 − Tx0‖

1 − k
.

Since (17) implies

‖Tx − x0‖ − ‖x0 − Tx0‖ ≤ ‖Tx− Tx0‖ ≤ k‖x − x0‖ + r

it holds for x ∈ B̂ that

‖Tx− x0‖ ≤ k‖x − x0‖ + r + ‖x0 − Tx0‖ ≤ kr̂ + (1 − k)r̂ = r̂,

i.e., Tx ∈ B̂. Hence, T maps the nonempty compact and convex subset M̂ =
M ∩ B̂ into itself.
(b) Consider the set-valued map T : M̂ → 2M̂ defined by T (x) = convM(x),
where

M(x) = {y ∈ M̂ : there is a sequence (xi) ⊂ M̂ such that xi → x, Txi → y}.
(22)

For all x ∈ M̂ , M(x) �= ∅ because M̂ is compact. By definition, it is also closed.
Moreover, (17) and (22) yield diamM(x) ≤ r, i.e., it is bounded. Since X is
finite-dimensional, M(x) and convM(x) are compact (see [8]). Finally, T is
upper semi-continuous (see [3]). Therefore, it follows from Kakutani’s theorem
(see [5] and [9]) that there exists a point x̄ ∈ M̂ with

x̄ ∈ T (x̄) = convM(x̄). (23)

(c) Assume dim X = 1. If ‖x̄ − T x̄‖ ≤ (1/2)r then (18) holds for x∗ = x̄.
Otherwise, if ‖x̄ − T x̄‖ > (1/2)r, then diam (M(x̄) ∪ T x̄) ≤ r, which follows
from (17) and (22), M(x̄) ∪ T x̄ ⊂ R and x̄ ∈ convM(x̄) imply that there exists
ȳ ∈ M(x̄) satisfying ‖x̄ − ȳ‖ < (1/2)r. By choosing ε = (1/2)r − ‖x̄ − ȳ‖ > 0
and x∗ satisfying (24), we have

‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖ + ‖x̄ − ȳ‖ + ‖ȳ − Tx∗‖ < ‖x̄ − ȳ‖ + ε =
1
2

r,
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i.e., (18) holds true.
(d) By diamM(x̄) ≤ r and Proposition 3, there is a ȳ ∈ M(x̄) such that

‖x̄ − ȳ‖ ≤ n

n + 1
diamM(x̄) ≤ n

n + 1
r.

Due to (22), for any ε > 0, there exists a point x∗ ∈ M̂ ⊂ M such that

‖x∗ − x̄‖ <
ε

2
and ‖Tx∗ − ȳ‖ <

ε

2
. (24)

Consequently,

‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖ + ‖x̄ − ȳ‖ + ‖ȳ − Tx∗‖ <
n

n + 1
r + ε,

i.e., (19) holds true.
(e) If X is an n-dimensional strictly normed space with n ≥ 2 then, by Propo-
sition 3 and (23), there is a ȳ ∈ M(x̄) such that

‖x̄ − ȳ‖ <
n

n + 1
diamM(x̄) ≤ n

n + 1
r.

By choosing ε = n/(n + 1)r − ‖x̄ − ȳ‖ > 0 and x∗ satisfying (24), we obtain

‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖ + ‖x̄ − ȳ‖ + ‖ȳ − Tx∗‖ < ‖x̄ − ȳ‖ + ε =
n

n + 1
r,

i.e., (20) holds true.
(f) Assume now that X is the n-dimensional Euclidean space. By (23), there
exists a finite set M̃ ⊂ M(x̄) such that x̄ ∈ conv M̃ . Consider S = M̃ ∪ T x̄.
Obviously, x̄ ∈ convS. Moreover, it follows from (17) and (22) that diamS ≤ r.
If ‖x̄ − T x̄‖ ≤ rX(S) then, by Jung’s inequality [4]

rX(S) ≤
√

n

2(n + 1)
diam S, (25)

we have

‖x̄ − T x̄‖ ≤ rX(S) ≤
√

n

2(n + 1)
r,

i.e., (21) is fulfilled for x∗ = x̄. Otherwise, if ‖x̄−T x̄‖ > rX(S) then Proposition
2 yields

min
s∈M̃

‖x̄ − s‖ = min
s∈S

‖x̄ − s‖ < rX(S).

Consequently, there is a ȳ ∈ M̃ ⊂ M(x̄) such that ‖x̄ − ȳ‖ < rconv S(S). For

ε = rconv S(S) − ‖x̄ − ȳ‖ > 0,

(22) implies the existence of x∗ ∈ M̂ ⊂ M satisfying (24). Therefore, we have

‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖ + ‖x̄ − ȳ‖ + ‖ȳ − Tx∗‖ ≤ ‖x̄ − ȳ‖ + ε = rconv S(S).

Hence, (21) follows from (25) and diamS ≤ r. �
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Note that r-roughly k-contractive mappings were investigated in [7]. We
showed there that the usual iteration xi+1 = Txi used in Banach’s fixed-point
theorem [1] is only suitable for approximating γ-invariant points satisfying
‖x∗ − Tx∗‖ ≤ γ for γ ≥ r/(1 − k) > r. The existence of γ-invariant points
with γ ≤ r is guaranteed if the domain M is convex, as stated by Theorem 3.11
in [7]. Since the proof of ‖x∗ − Tx∗‖ ≤ n/(n + 1)r for strictly convex spaces
based on an incorrect proposition, we present a modified proof in this paper,
even for the strict inequality ‖x∗ − Tx∗‖ < (n/n + 1)r.
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