Vietnam Journal of MATHEMATICS © NCST 2003

Short Communications

On Unique Range Sets for P-Adic Holomorphic Maps

Vu Hoai An and Doan Quang Manh

Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam

Received August 4, 2001

Abstract. The purpose of this paper is to give a uniqueness result for holomorphic maps in terms of partial multiplicities.

1. Introduction

In 1926, Nevanlinna proved that two non-constant meromorphic functions of one complex variable which attain same five distinct values at the same points, must be identical.

It is observed that p-adic entire functions of one complex variable behave in many ways more like polynomials than entire functions. In 1971, Adams and Straus [1] proved the following theorem.

Theorem A. Let f, g be two non-constant p-adic entire functions such that for two distinct (finite) values a, b we have $f(x) = a \Leftrightarrow g(x) = a$ and $f(x) = b \Leftrightarrow g(x) = b$. Then $f \equiv g$.

For p-adic meromorphic functions, Adams and Straus [1] and Hu-Yang [4] obtained the following result similar to Nevanlinna's.

Theorem B. Let f, g be two non-constant p-adic meromorphic functions such that for four distinct values a_1, a_2, a_3, a_4 we have $f(x) = a_i \Leftrightarrow g(x) = a_i, i = 1, 2, 3, 4$. Then $f \equiv g$.

Ru [7] extended Theorem B to p-adic holomorphic curves. In this note we

prove a similar theorem for the case of holomorphic maps from \mathbb{C}_p^m to $\mathbb{P}^n(\mathbb{C}_p)$.

2. Height of P-Adic Holomorphic Functions of Several Variables

Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers and \mathbb{C}_p the p-adic completion of the algebraic closure of \mathbb{Q}_p . The absolute value in \mathbb{Q}_p is normalized so that $|p| = p^{-1}$. We further use the notion v(z) for the additive valuation on \mathbb{C}_p which extends ord_p .

We use the notations

$$b_{(m)} = (b_1, ..., b_m), \quad b_i(b) = (b_1, ..., b_{i-1}, b, b_{i+1}, ..., b_m),$$

$$\widehat{(b_i)} = (b_1, ..., b_{i-1}, b_{i+1}, ..., b_m),$$

$$D_r = \left\{ z \in \mathbb{C}_p : |z| \le r, r > 0 \right\},$$

$$D_{r_{(m)}} = D_{r_1} \times \cdots \times D_{r_m}, \quad \text{where} \quad r_{(m)} = (r_1, ..., r_m) \text{ for } r_i \in \mathbb{R}_+,$$

$$D_{< r_{(m)}>} = D_{< r_1>} \times \cdots \times D_{< r_m>}, \gamma_i \in \mathbb{N}, \gamma = (\gamma_1, ..., \gamma_m), \quad |\gamma| = \gamma_1 + \cdots + \gamma_m,$$

$$z^{\gamma} = z_1^{\gamma_1} ... z_m^{\gamma_m}, \quad r^{\gamma} = r_1^{\gamma_1} ... r_m^{\gamma_m}, \quad t_i = v(r_i), \quad i = 1, ..., m.$$

Notice that the set of $(r_1, ..., r_m) \in \mathbb{R}_+^m$ such that there exist $x_1, ..., x_m \in \mathbb{C}_p$ with $|x_i| = r_i, i = 1, ..., m$, is dense in \mathbb{R}_+^m . Therefore, without loss of generality one can assume that $D_{< r_{(m)}>} \neq \emptyset$.

Let f be a non-zero holomorphic function in $D_{r_{(m)}}$ represented by a convergent series

$$f = \sum_{|\gamma| \ge 0} a_{\gamma} z^{\gamma}, \quad |z_i| \le r_i \text{ for } i = 1, \dots, m.$$

Set $\gamma t = \gamma_1 t_1 + \cdots + \gamma_m t_m$. Then we have

$$\lim_{|\gamma| \to \infty} (v(a_{\gamma}) + \gamma t) = + \infty.$$

Hence, there exists a $(\gamma_1, \ldots, \gamma_m) \in \mathbb{N}^m$ such that $v(a_\gamma) + \gamma t$ is minimal.

Definition 2.1. The height of the function $f(z_{(m)})$ is defined by

$$H_f(t_{(m)}) = \min_{0 \le |\gamma| < \infty} (v(a_{\gamma}) + \gamma t).$$

We also use the notation

$$H_f^+(t_{(m)}) = -H_f(t_{(m)}).$$

Set

$$I_f(t_{(m)}) = \Big\{ (\gamma_1, \dots, \gamma_m) \in \mathbb{N}^m : v(a_\gamma) + \gamma t = H_f(t_{(m)}) \Big\},$$

$$n_{i,f}(0, r_{(m)}) = \max \Big\{ \gamma_i : \exists (\gamma_1, \dots, \gamma_i, \dots, \gamma_m) \in I_f(t_{(m)}) \Big\}.$$

For each $u = (u_1, ..., u_m) \in D_{r_{(m)}}$, set

$$f_{i,u}(z) = f(u_1, ..., u_{i-1}, z_i, u_{i+1}, ...u_m), z = z_i \in D_{r_i}.$$

Notice that, there always exists $u \in D_{r_{(m)}}$ such that $n_{i,f}(0, r_{(m)})$ is equal to the number of zeros with absolute value $\leq r_i$ of the one - variable function $f_{i,u}(z)$ (see [2, Theorem 3.1]).

For a an element of \mathbb{C}_p and f a holomorphic function on $D_{r_{(m)}}$, which is not identically equal to a, define

$$n_{i,f}(a, r_{(m)}) = n_{i,f-a}(0, r_{(m)}), \quad i = 1, \dots, m.$$

Fix real numbers ρ_1, \ldots, ρ_m with $0 < \rho_i \le r_i, i = 1, \ldots, m$. For each $x \in \mathbb{R}$, set

$$A_i(x) = (\rho_1, \dots, \rho_{i-1}, x, r_{i+1}, \dots, r_m), i = 1, \dots, m.$$

Define the counting function $N_f(a, t_{(m)})$ by

$$N_f(a, t_{(m)}) = \frac{1}{\ln p} \sum_{k=1}^m \int_{\rho_k}^{r_k} \frac{n_{k,f}(a, A_k(x))}{x} dx.$$

If a = 0, then set $N_f(t_{(m)}) = N_f(0, t_{(m)})$.

Theorem 2.2.

1) Let f be a non-zero holomorphic function on $D_{r_{(m)}}$. Then

$$H_f^+(t_{(m)}) - H_f^+(c_{(m)}) = N_f(t_{(m)}),$$

and for each i=1,2,...,m, there exists a set $\mathcal{U}^{i}_{f,A_{i}(r_{i})}$ such that if $u^{i}\in\mathcal{U}^{i}_{f,A_{i}(r_{i})}$, then

$$n_{f_{i,u^i}}(0,x) = n_{i,f}(0,A_i(x)), \ \rho_i \le x \le r_i.$$

2) Let $f_s(z_{(m)}), s = 1, 2, ..., q$, be q non-zero holomorphic functions on $D_{r_{(m)}}$. Then for each i = 1, 2, ..., m, there exists $u^i \in \mathcal{U}^i_{f_s, A_i(r_i)}$ for all s = 1, 2, ..., q.

The proof of Theorem 2.2 follows immediately from [2, Theorem 3.1 and Theorem 3.2].

Let f be a non-zero holomorphic function on $D_{r_{(m)}}$. Then there exists a set $\mathcal{U}^i_{f,A_i(r_i)}, i=1,...,m$, as in the statement of Theorem 2.2.

$$v = (u^{1}, \dots, u^{m}), u^{i} \in \mathcal{U}_{f, A_{i}(r_{i}),}^{i}$$

$$N_{f_{v}}(t_{(m)}) = N_{f_{1, u^{1}}}(t_{1}) + \dots + N_{f_{m, u^{m}}}(t_{m}),$$

$$V = \{v : N_{f_{v}}(t_{(m)}) = N_{f}(t_{(m)})\}.$$

By Theorem 2.2, V is a non-empty set,

$$N_{f_v}(t_{(m)}) = \sum_{\substack{c_1 > v(a) \ge t_1}} (v(a) - t_1) + n_{f_1, u^1}(0, \rho_1)(c_1 - t_1) + \dots + \sum_{\substack{c_m > v(a) \ge t_m}} (v(a) - t_m) + n_{f_m, u^m}(0, \rho_m)(c_m - t_m),$$
(2.1)

where $c_i = v(\rho_i)$ and

$$\sum_{c_i > v(a) \ge t_i} (v(a) - t_i)$$

is taken on all of zeros a of f_{i,u^i} (counting multiplicity) with $c_i > v(a) \ge t_i, i = 1, 2, ..., m$.

Definition 2.3. For every positive integer k denote by $N_{k,f_v}(t_{(m)})$ the sum (2.1), where every zero a of functions f_{i,u^i} for all $i=1,\ldots,m$, is counted with multiplicity if its multiplicity is less than or equal to k, and k times otherwise. Notice that, there always exists $v \in V$ such that $N_{k,f_v}(t_{(m)})$ is maximum. Set

$$N_{k,f}(t_{(m)}) = \max_{v \in V} N_{k,f_v}(t_{(m)}).$$

We call $N_{k,f}(t_{(m)})$ the k-truncated counting function of f.

Let f be a non-zero holomorphic function on $D_{r_{(m)}}$ and take $k,\ell\in\mathbb{N}^*.$ Write

$$N_{k,f}(t_{(m)}) = \sum_{c_1 > v(a) \ge t_1} (v(a) - t_1) + n_{f_{1,u^1}}(0, \rho_1)(c_1 - t_1)$$

$$+ \dots + \sum_{c_m > v(a) \ge t_m} (v(a) - t_m) + n_{f_{m,u^m}}(c_m - t_m),$$

$$(2.2)$$

where every zero a of functions f_{i,u^i} for $i=1,\ldots,m$, is counted with multiplicity as in the statement of Definition 2.3.

By $N_{k,f}^{\leq \ell}(t_{(m)})$ (resp. $N_{k,f}^{>\ell}(t_{(m)})$) we denote the sum taken over all of zeros a with multiplicity less than or equal to ℓ (resp. at least $\ell+1$). Then

$$N_{k,f}(t_{(m)}) = N_{k,f}^{\leq \ell}(t_{(m)}) + N_{k,f}^{>\ell}(t_{(m)}).$$

Let f be a non-zero holomorphic function on $D_{r_{(m)}}, a=(a_1,\ldots,a_m)\in D_{r_{(m)}}$, and let f represented by a convergent series

$$f(z_{(m)}) = \sum_{|\gamma|=0}^{\infty} a_{\gamma}(z_1 - a_1)^{\gamma_1} \dots (z_m - a_m)^{\gamma_m}, \quad z_{(m)} \in D_{r_{(m)}}.$$

Set

$$v_f(a) = \min \{ |\gamma| : a_\gamma \neq 0 \}.$$

For each $i = 1, 2, \ldots, m$, write

$$f(z_{(m)}) = \sum_{k=0}^{\infty} \widehat{f_{i,k}(z_i - a_i)} (z_i - a_i)^k.$$

Set

$$g_{i,k}(z_1,...,z_{i-1},z_{i+1},...,z_m) = \widehat{f_{i,k}(z_i - a_i)}, \ b_{i,k} = g_{i,k}(a_1,...,a_{i-1},a_{i+1},...,a_m).$$

Then $f_{i,a}(z) = \sum_{k=0}^{\infty} b_{i,k}(z_i - a_i)^k$. Set

$$\begin{aligned} v_{i,f}(a) &= \left\{ \begin{array}{ll} \min \ \left\{ k: b_{i,k} \neq 0 \right\} & \text{if } f_{i,a}(z) \not\equiv 0 \\ + \infty & \text{if } f_{i,a}(z) \equiv 0, \end{array} \right. \\ \text{ord}_{i,f}(a) &= \left\{ \begin{array}{ll} \min \ \left\{ k: g_{i,k} \widehat{(z_i)} \not\equiv 0, k \neq 0 \right\} \\ + \infty & \text{if } g_{i,k} \widehat{(z_i)} \equiv 0 \text{ for all } k \neq 0. \end{array} \right. \end{aligned}$$

If f(a) = 0, then a (resp., a_i) is a zero of $f(z_{(m)})$ (resp., $f_{i,a}(z)$). Then the numbers $v_f(a), v_{i,f}(a)$, ord_{i,f}(a) are called multiplicity, i-th partial multiplicity, i-th partial order, respectively, of a.

3. Uniqueness Problems Without Counting Multiplicity in Several Variables

By a holomorphic map

$$f: \mathbb{C}_p^m \longrightarrow \mathbb{P}^n(\mathbb{C}_p) = \mathbb{P}^n,$$

we mean an equivalence class of (n+1)-tuples of entire functions (f_1,\ldots,f_{n+1}) such that f_1,\ldots,f_{n+1} do not have any common factor in the ring of entire functions on \mathbb{C}_p^m , where two (n+1)-tuples (f_1,\ldots,f_{n+1}) and (g_1,\ldots,g_{n+1}) are equivalent if there exists a constant c such that $f_i=cg_i$ for all i. We identify f with its representation by a collection of entire functions on \mathbb{C}_p^m

$$f = (f_1, \ldots, f_{n+1}).$$

Definition 3.1. The height of a holomorphic map f is defined by

$$H_f(t_{(m)}) = \min_{1 \le i \le n+1} H_{f_i}(t_{(m)}).$$

We also use the notation

$$H_f^+(t_{(m)}) = -H_f(t_{(m)}).$$

Notice that $H_f(t_{(m)})$ is well defined up to an additive constant.

Hyperplanes H_1, \ldots, H_q in $\mathbb{P}^n, q \geq n+1$ are said to be in *general position* if any n+1 of them are linearly independent. Let H be a hyperplane of \mathbb{P}^n such that the image of f is not contained in H, and H is defined by the equation F=0.

We set

$$\begin{split} N_f(H,t_{(m)}) &= N_{F \circ f}(t_{(m)}), H_f(H,t_{(m)}) = H_{F \circ f}(t_{(m)},H_f^+(H,t_{(m)}) = -H_f(H,t_{(m)}), \\ \overline{E}_f(H) &= \{z_{(m)} \in \mathbb{C}_p^m : F \circ f(z_{(m)}) = 0 \text{ ignoring multiplicities}\}. \end{split}$$

For a positive integer k, define the set

$$\overline{E}_f(H,k) = \{z_{(m)} \in \mathbb{C}_p^m : F \circ f(z_{(m)}) = 0 \text{ ignoring multiplicities}, v_{i,F \circ f}(z_{(m)}) \leq k$$
 for $i \in \{1, \dots, m\}$ such that $v_{i,F \circ f}(z_{(m)}) \neq \infty\}.$

A holomorphic map $f: \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ is called *linearly non-degenerate* if the image of f is not contained in any hyperplane of \mathbb{P}^n .

Theorem 3.2. Let H_i be hyperplanes in general position in \mathbb{P}^n , defined by the equations $F_i = 0$ and let $k_i \in \mathbb{N}^*, i = 1, \ldots, q$. Let $f : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be a linearly non-degenerate holomorphic map. Suppose that every zero of $F_i \circ f$ $(i = 1, \ldots, q)$ satisfies the conditions that either all its partial multiplicities $(\neq \infty)$ are less than or equal to n, or all its partial orders are at least n + 1. Then

$$\left(\sum_{i=1}^{q} \frac{k_i}{k_i + 1} - n - 1\right) H_f^+(t_{(m)}) \le \sum_{i=1}^{q} \frac{k_i}{k_i + 1} N_{n,f}^{\le k_i}(H_i, t_{(m)}) + BT + 0(1),$$

where 0(1) is bounded when $T = \max_{1 \le i \le m} t_i \to -\infty$ and $n \le B \le \frac{n(n+1)}{2}$.

The following theorem generalizes Theorem B.

Theorem 3.3. Let $f = (f_1, \ldots, f_{n+1}), g = (g_1, \ldots, g_{n+1}) : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be two linearly non-degenerate holomorphic maps. Let H_i be hyperplanes in general position in \mathbb{P}^n , defined by the equations $F_i = 0$. Let $k_i \in \mathbb{N}^*, i = 1, \ldots, q$ with $k_1 \geq k_2 \geq \cdots \geq k_q$,

$$\sum_{i=2n^2+1}^{q} \frac{k_i}{k_i+1} \ge n+1. \tag{3.9}$$

Assume that every zero of $F_i \circ f$, $F_i \circ g$ (i = 1, ..., q) satisfies the conditions that either all its partial multiplicities $(\neq \infty)$ are less than or equal to n, or all its partial orders are at least n+1. Moreover let $\overline{E}_f(H_i, k_i) = \overline{E}_g(H_i, k_i)$, i = 1, 2, ..., q, and $f(z_{(m)}) = g(z_{(m)})$ for every point $z_{(m)} \in \bigcup_{i=1}^q \overline{E}_f(H_i, k_i)$. Then $f \equiv g$.

Theorem 3.3 gives the following

Corollary 3.4. Let $f = (f_1, \ldots, f_{n+1}), g = (g_1, \ldots, g_{n+1}) : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be two linearly non-degenerate holomorphic maps. Let H_i be hyperplanes in general position in \mathbb{P}^n , defined by the equations $F_i = 0$, and let $q \ge 2n^2 + n + 1$. Assume that every zero of $F_i \circ f$, $F_i \circ g$ $(i = 1, \ldots, q)$ satisfies the conditions that either all its partial multiplicities $(\ne \infty)$ are less than or equal to n, or all its partial orders are at least n + 1 and $\overline{E}_f(H_i) = \overline{E}_g(H_i)$, $i = 1, 2, \ldots, q$, and $f(z_{(m)}) = g(z_{(m)})$ for every point $z_{(m)} \in \bigcup_{i=1}^q \overline{E}_f(H_i)$. Then $f \equiv g$.

Corollary 3.5. Let $f = (f_1, \ldots, f_{n+1}), g = (g_1, \ldots, g_{n+1}) : \mathbb{C}_p^m \longrightarrow \mathbb{P}^n$ be two linearly non-degenerate holomorphic maps. Let H_i be hyperplanes in general position in \mathbb{P}^n , defined by the equations $F_i = 0$, and let $k_i \in \mathbb{N}^*, i = 1, \ldots, q$, with $k_1 \geq k_2 \geq \cdots \geq k_q$,

$$\sum_{i=2n+1}^{q} \frac{k_i}{k_i + 1} \ge n + 1.$$

Assume that every zero of $F_i \circ f$, $F_i \circ g$ $(i=1,\ldots,q)$ satisfies the conditions that either all its partial multiplicities $(\neq \infty)$ are less than or equal to n, or all its partial orders are at least n+1 and $\overline{E}_f(H_i,k_i)=\overline{E}_g(H_i,k_i), i=1,2,\ldots,q$ and for each $i\neq j, \overline{E}_f(H_i,k_i)\cap \overline{E}_f(H_j,k_j)=\emptyset$, and $f(z_{(m)})=g(z_{(m)})$ for every point $z_{(m)}\in \bigcup_{i=1}^q \overline{E}_f(H_i,k_i)$. Then $f\equiv g$.

Notice that, take $k_1 = k_2 = \cdots = k_q = k$ and for $k \longrightarrow \infty$, m = 1, from Corollary 3.5, we obtain the uniqueness theorem for p-adic holomorphic curves of Min Ru [7].

Acknowledgement. The authors would like to thank Professor Ha Huy Khoai for his comments and suggestions.

References

- 1. W. W. Adams and E. G. Straus, Non-Archimedean analytic functions taking the same values at the same points, *Illinois J. Math.* **15** (1971) 418–424.
- 2. Vu Hoai An, p-adic Poisson Jensen Formula in Several Variables, Vietnam J. Math. 30 (2002) 43–54.
- 3. W. Cherry and Z. Ye, Non-Archimedean Nevanlinna theory in several variables and the Non-Archimedean Nevanlinna inverse problem, *Trans. Amer. Math. Soc.* **349** (1997) 5043–5071.
- 4. P.C. Hu and C.C. Yang, Value distribution theory of p-adic meromorphic functions. Izv. Nats. Acad. Nauk Armenii Nat. **32** (1997) 46–67.
- 5. Ha Huy Khoai, La hauteur des fonctions holomorphes p—adiques de plusieurs variables, C. R. A. Sc. Paris 312 (1991) 731–751.
- Ha Huy Khoai and Mai Van Tu, p-adic Nevanlinna Cartan Theorem, Internat. J. Math. 6 (1995) 719–731.
- 7. Min Ru, Uniqueness theorems for p-adic holomorphic curves, Illinois J. Math. (to appear).