Vietnam Journal of MATHEMATICS © NCST 2003

A Remark on Non-Markov Property of a Fractional Brownian Motion

Dang Phuoc Huy

Department of Mathematics, University of Dalat, Dalat, Vietnam

Received November 23, 2001 Revised December 5, 2002

Abstract. In this short remark we would like to give a simple proof for the non-Markov property of a fractional Brownian motion. Such a proof cannot be found anywhere else so far.

Introduction

Fractional Brownian motion plays an intensive role in study of stochastic dynamical systems that exhibit a long range dependence between states of the system (see [2] for example).

It is known that, in general, a fractional Brownian motion is not a semimartingale and it is not a Markov process. The proof of the first assertion can be found in [4]. Up to now there does not exist any strict and direct proof for the second assertion. One proved only that a fractional Brownian motion B_t is a long memory process in the sense that B_t and B_{t+k} is still corrected for enough large k (see [1, 5-6]) and the non-Markov property is deduced from this as a consequence. And now we would like to give a simple proof for the second assertion based only on a property of covariance function of a Gaussian Markov process.

Recall that a fractional Brownian motion X_t is a centered Gaussian process whose covariance function $R(t,s) = EX_tX_s$ is given by

$$R(t,s) = \frac{1}{2}(|t|^{\alpha} + |s|^{\alpha} - |t - s|^{\alpha}), \tag{1}$$

where α is a real parameter, $0 < \alpha < 2$. In the case where $\alpha = 1, R(t, s) = \frac{1}{2}(|t| + |s| - |t - s|) = \min(t, s)$ we have an ordinary standard Brownian motion.

We will prove that X_t is not a Markov process for $\alpha \neq 1$, based on a known necessary condition for Markov property as follows [6-7]:

Lemma. Suppose that R(t, s) is the covariance function of a centered Gaussian process X_t . If X_t is a Markov process then for any $t > s > t_0$ we have

$$R(t,t_0) = \frac{R(t,s)R(t_0,t_0)}{R(s,s)}, \quad t > s > t_0.$$
(2)

Proof. Consider two Gaussian variables

$$U = X_s$$
 and $V = X_t - \frac{R(t,s)}{R(s,s)}X_s$.

We have EU = EV = 0 and EUV = 0, so U and V are two uncorrelated Gaussian variables. Therefore they are independent, and by consequence

$$E\left[X_t - \frac{R(t,s)}{R(s,s)}X_s \middle| X_s = \xi\right] = E\left[X_t - \frac{R(t,s)}{R(s,s)}X_s\right]$$
$$= E(X_t) - \frac{R(t,s)}{R(s,s)}E(X_s) = 0,$$

where ξ is any possible value of X_s . Then we get

$$E\left[X_t \middle| X_s = \xi\right] - \frac{R(t,s)}{R(s,s)} E\left[X_s \middle| X_s = \xi\right] = 0$$

or

$$E(X_t | X_s = \xi) = \frac{R(t, s)}{R(s, s)} \xi.$$
(3)

Denote by $P(x,t|x_0,t_0)$ the transition probability of X_t . Then the Chapman-Kolmogorov equation can be written as

$$P(x,t|x_0,t_0) = \int_{-\infty}^{\infty} P(x,t|\xi,s)P(d\xi,s|x_0,t_0)$$
 (4)

We have

$$\begin{split} E\Big[X_t\Big|X_{t_0} &= x_0\Big] = \int_{-\infty}^{\infty} x dP(x,t|x_0,t_0) \\ &= \int_{-\infty}^{\infty} x P(dx,t|x_0,t_0) \\ &= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} P(dx,t|\xi,s) P(d\xi,s|x_0,t_0) \\ &= \int_{-\infty}^{\infty} \Big[\int_{-\infty}^{\infty} x P(dx,t|\xi,s)\Big] P(d\xi,s|x_0,t_0) \\ &= \int_{-\infty}^{\infty} \Big[E(X_t|X_s = \xi)\Big] P(d\xi,s|x_0,t_0) \\ &= \int_{-\infty}^{\infty} \frac{R(t,s)}{R(s,s)} \xi P(d\xi,s|x_0,t_0) \\ &= \frac{R(t,s)}{R(s,s)} \int_{-\infty}^{\infty} \xi P(d\xi,s|x_0,t_0) \end{split}$$

$$= \frac{R(t,s)}{R(s,s)} E[x_s | X_{t_0} = x_0]$$

$$= \frac{R(t,s)}{R(s,s)} x_0, \quad t_0 < s < t.$$
(5)

On the other hand we have from (5)

$$E[X_t | X_{t_0} = x_0] = \frac{R(t, t_0)}{R(t_0, t_0)} x_0.$$
(6)

In comparison (5) and (6) we get

$$\frac{R(t,s)}{R(s,s)} = \frac{R(t,t_0)}{R(t_0,t_0)}$$

or

$$R(t,t_0) = \frac{R(t,s)R(t_0,t_0)}{R(s,s)}, \quad t > s > t_0.$$

We are now in a position to prove the following

Theorem. A fractional Brownian motion is not a Markov process for $\alpha \neq 1$.

Proof. We will prove that for a fractional Brownian motion X_t the relation (2) is not true.

Fix t (t > s) and consider the function

$$f(s) = \frac{R(t,s)}{s^{\alpha}} = \frac{1}{2} \left[\left(\frac{t}{s} \right)^{\alpha} - 1 - \left(\frac{t}{s} - 1 \right)^{\alpha} \right], t > s.$$
 (7)

We take the derivative f'(s) of f(s):

$$f'(s) = -\frac{1}{2} \frac{\alpha t}{s^2} \left[\left(\frac{t}{s} \right)^{\alpha - 1} - \left(\frac{t}{s} - 1 \right)^{\alpha - 1} \right], t > s.$$
 (8)

We see that, for s < t

$$f'(s) > 0$$
 if $\alpha < 1$
 $f'(s) < 0$ if $\alpha > 1$
 $f'(s) = 0$ if $\alpha = 1$.

So f(s) is either an increasing function or a decreasing function and therefore either $f(s) > f(t_0)$ or $f(s) < f(t_0)$, and

$$f(s) = f(t_0) \quad \text{only for} \quad \alpha = 1, \quad (s > t_0). \tag{9}$$

Now for $\alpha \neq 1$,

$$\frac{R(t,s)}{s^{\alpha}} \neq \frac{R(t,t_0)}{t_0^{\alpha}}$$

or

$$t_0^{\alpha} R(t,s) \neq s^{\alpha} R(t,t_0).$$

So we have

$$R(t_0, t_0)R(t, s) \neq R(s, s)R(t, t_0)$$
 for $t > s > t_0$. (10)

or

$$R(t, t_0) \neq \frac{R(t, s)R(t_0, t_0)}{R(s, s)}, \quad t > s > t_0.$$

The equality (9) occurs only when $\alpha = 1$, then f'(s) = 0 and f(s) is identically equal to a constant:

$$\frac{R(t,s)}{s^{\alpha}} = \frac{R(t,t_0)}{t_0^{\alpha}}$$

or

$$R(t,t_0) = \frac{R(t,s)R(t,t_0)}{R(s,s)}. (11)$$

We know that this is the case of an ordinary standard Brownian motion. The proof is thus complete.

References

- 1. P. Carmona and L. Coutin, Fractional brownian motion and the Markov property, *Elec. Commun. Probab.* **3** (1998) 95–107.
- 2. T. E. Duncan, Y. Hu, and B. P. Duncan, Stochastic calculus for fractional brownian motion, SIAM Control and Optimi. 38 (2000) 582–612.
- 3. T. T. Nguyen and D. P. Huy, A note on fractional stochastic Verhulst equation with small perturbation, *Soochow J. Math.* **28** (2002) 57–64.
- L. C. G. Rogers, Arbitrage with fractional Brownian motion, J. Math. Finance 7 (1997) 95–105.
- 5. A. N. Shiryaev, Essentials of Stochastic Finance: Facts, Models, Theory, Advanced Series on Statistical Science & Applied Probab. 3, World Scientific, Singapore 1999.
- J. M. Stoyanov, Counterexamples in Probability, 2nd Edition, John Wiley & Sons, Chichester, 1997.
- 7. E. Wong and B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1985.