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Abstract. We study the relation between probabilistic iterated function systems

introduced in [1] and probabilistic systems introduced in [4]. We prove that the proba-

bilistic iterated function system {fi(x) = ρx+ri : i = 0, 1, . . . , m} with probabilities

pi ≥ 0,
∑m

i=0 pi = 1 and the probabilistic system in the sense of [4] induce the same

measure and therefore these systems are equivalent to each other.

1. Introduction

Let {f0, f1, ..., fm} be an iterated function system (IFS for short) of contractive
similitudes on R

d defined by

fi(x) = ρiRix + bi, 0 ≤ i ≤ m, (1.1)

where for all i, 0 < ρi < 1, bi ∈ R
d and Ri is a d × d orthogonal matrix.

The unique non - empty compact set E ⊂ R
d satisfying the equation

E =
m⋃

i=0

fi(E)

is called the attractor or invariant set of the IFS {f0, f1, . . . , fm}.
Assume that {f0, f1, . . . , fm} is an IFS on X ⊂ R and let p0, p1, . . . , pm be

probabilities, with 0 ≤ pi ≤ 1 for all i and
∑m

i=0 pi = 1. Following [1], such a
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system is called a probabilistic iterated function system. Then we say that the
probabilities {p0, p1, . . . , pm} are associated with the IFS {f0, f1, . . . , fm}. Let
μ be a measure on X ⊂ R. Then the support of μ is the smallest closed subset
X on R such that μ(R\X) = 0. The support of μ is denoted by supp μ (where
we say that measure μ is a probability measure if μ(supp μ) = 1).

A probabilistic iterated function system leads to a measure on X as it was
shown in the following theorem, see [1].

Theorem 1.1. [1] Let {f0, f1, . . . , fm} be an iterated function system on X ⊂ R

with associated probabilities {p0, p1, . . . , pm}. Then there exists a unique Borel
probability measure μF (that is μF (X) = 1) such that

μF (A) =
m∑

i=0

piμF (f−1
i (A)) (1.2)

for all Borel sets A. Moreover, supp μF = E, where E is the attractor of the
IFS {fi : 0 ≤ i ≤ m and pi > 0}.

Following [5], by a probabilistic system we mean a sequence X0, X1, . . . of
independent identically distributed random variables each taking real values
r0, r1, . . . , rm with respective probabilities p0, p1, ..., pm. The system is said
to be uniformly distributed if pi = 1

m+1 for every i = 0, 1, ..., m. For 0 < ρ < 1,
let

S =
∞∑

n=0

ρnXn

and let μP be the probability measure induced by S, i.e.

μP (A) = prob {ω : S(ω) ∈ A}.
The measure μP is called the fractal measure associated with the probabilistic
system. In the case of uniform distribution, the fractal measure is denoted simply
by μ.

This paper is organized as follows. In Sec. 2 we construct an iterated func-
tion system whose attractor is supp μ in the case of uniform distribution, and
give another representation of the mentioned support. In Sec. 3 we investigate
the relation between probabilistic iterated function system introduced in [1] and
probabilistic system introduced in [4]. We prove that the iterated fucntion sys-
tem {f0, f1, . . . , fm} associated with probabilities pi ≥ 0,

∑m
i=0 pi = 1 and the

probabilistic system induce the same measure, i.e. μF (A) = μP (A) for all Borel
sets A ⊂ R and therefore the probabilistic iterated function system is equivalent
to the probabilistic system.

2. Support of a Fractal Measure Associated with a Uniformly Distri-
buted Probabilistic System

In this section we consider the fractal measure associated with a uniformly
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distributed probabilistic system in the case ri = i for i = 0, 1, . . . , m and
ρ = 1

q , m ≥ q ≥ 2, q is an integer.
Let N denote the set of all nonnegative integers. For m ∈ N we denote

Dm = {0, 1, . . . , m}, and D
n
m = {0, 1, . . . , m}n, where n ≤ ∞.

For q ≥ 2 let

S =
∞∑

k=0

q−kXk, and Sn =
n∑

k=0

q−kXk.

There is no confusion if we also use the notation

S : D
∞
m → R

+, and Sn : D
n+1
m → R

+

for functions defined by

S(x) =
∞∑

k=0

q−kxk for x = (x0, x1, . . . ) ∈ D
∞
m ,

and
Sn(x) =

n∑

k=0

q−kxk for x = (x0, x1, ...) ∈ D
n+1
m .

Let μ and μn denote the probability measures induced by S and Sn, respectively.
The following lemma was shown in [5].

Lemma 2.1. Let sn(0) < sn(1) < . . . < sn(kn) denote the set of all distinct
values of supp μn. Then we have

1. sn(0) = 0 and sn+1(kn+1) = sn(kn) + mq−n−1 for every n ∈ N.
2. The distance between any two consecutive points in supp μn is q−n.
3. Supp μn ⊂ supp μn+1 for every n ∈ N and supp μ =

⋃∞
n=0 supp μn.

4. The set supp μn consists of kn = m(qn+1−1)
q−1 + 1 points runing from 0 to

m(qn+1−1)
qn(q−1) .

As an immediate consequence of Lemma 2.1 we have

Corollary 2.2. F = supp μ is a compact set.

As we have seen, there are two main problems that arise in connection with
IFSs. First, given a fractal E, find an IFS with attractor E or, at least, a close
approximation to E. The second (the inverse problem) is to reconstruct the
attractor E for a given IFS. In this section we study the first problem, that is
to find an IFS with attractor E, the support of the fractal measure μ associated
with the uniformly probabilistic system. We have the following theorem.

Theorem 2.3. The supp μ is the attractor of the IFS {f0, f1, . . . , fm} defined
by

f0(x) =
x

q
, f1(x) = 1 +

x

q
, . . ., fm(x) = m +

x

q
, (2.2)

that is
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F =
m⋃

k=0

fk(F ).

Proof. Assume that x ∈ F , then x is of the form

x =
∞∑

k=0

xk

qk
= x0 +

x1

q
+

x2

q2
+ . . ..

We take
x′ = x1 +

x2

q
+

x3

q2
+ · · · + xn

qn−1
+ · · · ∈ F,

and assume that x0 = k. Then we have

fk(x′) = x0 +
x1

q
+

x2

q2
+ . . . = x.

Therefore

x ∈
m⋃

k=0

fk(F ).

Conversely, if x ∈ ⋃m
k=0 fk(F ), then there is k ∈ {0, 1, . . . , m} such that

x ∈ fk(F ). Assume that x = fk(x′), where

x′ = x0 +
x1

q
+

x2

q2
+ . . . .

Hence
fk(x′) = k +

x0

q
+

x1

q2
+

x2

q3
+ . . ..

Putting
x′

0 = k, x′
1 = x0, x′

2 = x1, . . . , x′
i = xi−1, . . . ,

we get
x′

i ∈ {0, 1, . . . , m}, 0 ≤ i ≤ m.

Therefore

x = fk(x′) = x′
0 +

x′
1

q
+

x′
2

q2
+ . . . ∈ F.

Consequently

F =
m⋃

k=0

fk(F ).

Since F is a non-empty compact set, the proof is finished. �

Let S denote the class of non-empty compact subsets of R. We define a
transformation f : S −→ S by

f(A) =
m⋃

i=0

fi(A)

for A ∈ S. It was shown in [1] that, if A ∈ S such that fi(A) ⊂ A for all i, then
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F =
∞⋂

k=0

fk(A).

Consequently, by Theorem 2.3, we get

Theorem 2.4. F =
⋂∞

k=0 fk(A), where A = [0, mq
q−1 ].

Proof. For x ∈ A and i = 0, 1, . . . , m, we have

0 ≤ fi(x) ≤ fm(
mq

q − 1
) = m +

mq

(q − 1)q
=

mq

q − 1
.

That is
fi(A) ⊂ A for all i = 0, 1, . . . , m.

Therefore the assertion follows. �

3. The Equivalence Between Two Probabilistic Systems

In this section we consider the probabilistic system in the general setting and
will show that the probabilistic system and the probabilistic iterated function
system induce the same measure. Therefore these systems are equivalent to each
other.

Let X0, X1, . . . be a sequence of independent identically distributed random
variables each taking real values r0 < r1 < . . . < rm with respective probabilities
p0, p1, . . . , pm, 0 ≤ pi ≤ 1 for all i and

∑m
i=0 pi = 1. For 0 < ρ < 1 we put

S =
∞∑

n=0

ρnXn.

Let μP be the fractal measure induced by S, that is

μP (A) = prob{ω ∈ Ω : S(ω) ∈ A}, (3.1)

where Ω is sampled space. Observe that every ω ∈ Ω can be identified with
a sequence (x0, x1, . . . ) where xi ∈ {r0, r1, . . . , rm}. Therefore, we may write
ω ≡ (x0, x1, . . . ).

Let μP is the fractal measure defined by (3.1). Then supp μP is given by
the following formula which is a generalization of Theorem 2.3.

Proposition 3.1.

supp μP = {
∞∑

n=0

ρnxn, xn ∈ D, n = 0, 1, . . .}, (3.2)

where D = {r0, r1, . . . , rm} and pi 	= 0 for all i = 0, 1, . . . , m.

Proof. Let us put

G = {
∞∑

n=0

ρnxn : xn ∈ D, n = 0, 1, 2, . . .}.
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Observe that G is closed and μP (R\G) = 0. Therefore

supp μP ⊂ G. (3.3)

To obtain the reverse inclusion, we need the following lemma

Lemma 3.2.

supp μP = {x ∈ R : μP (Bε(x)) > 0 for all ε > 0} (3.4)

where Bε(x) = (x − ε, x + ε).

Proof. Let us put
K = {x ∈ R : μP (Bε(x)) > 0 for all ε > 0}.

Let x ∈ supp μP . If x /∈ K, then there exists ε0 > 0 such that

μP (Bε0(x)) = 0.

Then we have

μP

(
R\(supp μP \Bε(x))

)
= μP

(
R\supp μP ∪ Bε0(x)

)

≤ μP (R\supp μP ) + μP (Bε0(x)) = 0.

Since supp μP is closed and Bε0(x) is open, supp μP \Bε0(x) is closed. Moreover,
since supp μP \Bε0(x) ⊂ supp μP , this contradicts the definition of support.
Therefore x ∈ K. Hence

supp μP ⊂ K.

Conversely, let x ∈ K. If x /∈ supp μP , then there exists ε0 > 0 such that
Bε0(x) ∩ supp μP = ∅. Therefore

Bε0(x) ⊂ R\supp μP .

It follows that
μP (Bε0(x)) = 0.

This is a contradiction to x ∈ K. Hence x ∈ supp μP . The Lemma is thus
proved. �

We return to the proof of Proposition 3.1. Let s ∈ G, then s =
∑∞

n=0 ρnxn,
xn ∈ D, n = 0, 1, . . . .

Let ε > 0. We take n ∈ N such that

ρn+1r

1 − ρ
<

ε

2
and s − ε

2
< sn < s +

ε

2
,

where r = max{rm, rm − r0}.
Putting

B = {ω ∈ Ω : ω = (x0, x1, . . . , xn, y0, y1, . . . ), yk ∈ D, k = 0, 1, . . . },
we will show that

ω ∈ B implies S(ω) ∈ Bε(s). (3.5)

In fact, for ω = (x0, x1, . . . , xn, y0, y1, . . . ) ∈ B we get
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S(ω) = sn + ρn+1(y0 + ρy1 + ρ2y2 + . . . ) ≤ sn +
ρn+1rm

1 − ρ

≤ sn +
ρn+1r

1 − ρ
≤ s +

ε

2
+

ε

2
= s + ε,

(3.6)

where sn = x0 + ρx1 + · · · + ρnxn.
On the other hand we have

sn = s − ρn+1(xn+1 + ρxn+2 + . . . ).

Therefore
S(ω) = sn + ρn+1(y0 + ρy1 + ρ2y2 + . . . )

= s − ρn+1((xn+1 − y0) + ρ(xn+2 − y1) + . . . )

≥ s − ρn+1(rm − r0)
1 − ρ

≥ s − ρn+1r

1 − ρ
> s − ε.

Thus, assertion (3.5) follows from the latter and (3.6).
From (3.5) we get

μP (Bε(s)) = prob{ω ∈ Ω : S(ω) ∈ Bε(s)} ≥ prob{ω ∈ Ω : ω ∈ B}
= prob{(x0, x1, . . . , xn, y0, y1, . . . ), yk ∈ D, k = 0, 1, . . .}
= p(x0)p(x1) . . . p(xn)prob{(y0, y1, . . . ), yk ∈ D, k = 0, 1, . . . }
= p(x0)p(x1) . . . p(xn) > 0

(3.7)
where p(xi) = pj if xi = rj , i = 0, 1, . . . , n; j = 0, 1, . . . , m.

From the latter and Lemma 3.2 it follows that x ∈ supp μP , that is

G ⊂ supp μP .

The last inclusion and (3.3) prove Proposition 3.1. �

Let μP be the probabilistic measure defined by (3.1). Then the family of
contractions {fi : 0 ≤ i ≤ m} defined by

fi(x) = ρx + ri, for x ∈ R, i = 0, 1, . . . , m (3.8)

is an IFS on X = [ r0
1−ρ , rm

1−ρ ] with associated probabilities p0, p1, . . . , pm. In
its turn, this probabilistic iterated function system induces a new probabilistic
measure that denoted by μF , defined on Borel sets of R. Namely,

μF (A) =
m∑

i=0

piμF (f−1
i (A)) for all Borel sets A ⊂ R. (3.9)

There arises a question: Is there any relation between the given measure μP

and the reconstructed measure μF ? In this section we prove that μF = μP .
We begin first with some auxiliary facts. For ω = (x0, x1, . . . ) ∈ Ω, xi ∈

D, i = 0, 1, 2, . . . , we put ωj = (rj , x0, x1, . . . ) ∈ Ω, j = 0, 1, . . . , m. Then we
have

Proposition 3.3. For j = 0, 1, . . . , m, S(ω) ∈ f−1
j (A) if and only if S(ωj) ∈ A.
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Proof. Let S(ω) = x0 + ρx1 + ρ2x2 + · · · ∈ f−1
j (A), i.e.

fj(S(ω)) ∈ A.

Therefore
S(ωj) = rj + ρx0 + ρ2x1 + · · · = fj(S(ω)) ∈ A.

Conversely, assume S(ωj) ∈ A, that is

rj + ρx0 + ρ2x1 + · · · ∈ A.

We have

fj(S(ω)) = fj(x0 + ρx1 + ρ2x2 + . . . ) = rj + ρx0 + ρ2x1 + · · · ∈ A.

Hence
S(ω) ∈ f−1

j (A).

The proof of Proposition 3.3 is finished. �

Using Proposition 3.4 we obtain the following theorem which is the main
result of this section.

Theorem 3.4. Let μP and μF be the probabilistic measures defined by (3.1) and
(3.9), respectively. Then we have

μP (A) = μF (A) for all Borel sets A ⊂ R. (3.10)

Proof. First observe that

prob{ωj = (rj , x0, x1, . . . )} = pjprob{ω = (x0, x1, . . . )} (3.11)

for j = 0, 1, . . . , m and xi ∈ D, i = 0, 1, . . . . We have

{ω ∈ Ω : S(ω) ∈ A} = {(x0, x1, . . . ) : xi ∈ D, i = 0, 1, . . . , S((x0, x1, . . . ))∈ A}

=
m⋃

j=0

{(rj , x1, x2, . . . ) : xi ∈ D, i = 1, 2, . . . , S(rj , x1, x2, . . . ) ∈ A}.

Therefore, using (3.1), (3.11) and Proposition 3.3 we get

μP (A) = prob{ω ∈ Ω : S(ω) ∈ A}

=
m∑

j=0

prob{(rj , x1, x2, . . .) : xi ∈ D, i = 1, 2, . . . , S(rj , x1, x2, . . .) ∈ A}

=
m∑

j=0

prob{(rj , x1, x2, . . .) : xi ∈ D, i =1, 2, . . . , S(x1, x2, . . .) ∈ f -1
j (A)}

=
m∑

j=0

pjprob{(x1, x2, . . .) : xi ∈ D, i =1, 2, . . . , S(x1, x2, . . .) ∈ f - 1
j (A)}

=
m∑

j=0

pjprob{ω ∈ Ω : s(ω) ∈ f−1
j (A)} =

m∑

j=0

pjμP (f−1
j (A)).
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That is, the measure μP satisfies formula (3.9). Therefore by the uniqueness of
measure satisfying that formula, we conclude that

μP (A) = μF (A)

for all Borel sets A ⊂ R. The proof of the theorem is finished. �

The following result is an immediate consequence of Theorem 3.4.

Corollary 3.5.
supp μP = supp μF . (3.12)

By Theorem 1.1 supp μF is the attractor of the IFS defined by (3.8). There-
fore, from Proposition 3.1 and Corollary 3.5 we get

Corollary 3.6. Let {f0, f1, . . . fm} be an IFS defined by

fi(x) = ρx + ri for i = 0, 1, . . . , m; x ∈ R,

where 0 < ρ < 1. Then the attractor E of the IFS {fi : 0 ≤ i ≤ m} is of the
form

E = {
∞∑

n=0

ρnxn : xn ∈ D, n = 0, 1, . . .},

where D = {r0, r1, . . . , rm}.

Remark 3.7. As we have seen, the probabilistic system consisting of a sequence
X0, X1, . . . of independent identically distributed random variables each taking
real values r0 < r1 < · · · < rm with respective probabilities p0, p1, . . . , pm induces
a probabilistic measure μP defined by

μP (A) = prob{ω : S(ω) ∈ A},
where

S =
∞∑

n=0

ρnXn.

We construct an IFS {fi : 0 ≤ i ≤ m} defined by

fi(x) = ρx + ri, x ∈ R, i = 0, 1, . . . , m

with associated probabilities p0, p1, . . . , pm. The IFS defined above is called the
probabilistic iterated function system. In its turn, this system induces a new
probabilistic measure μF and μF (A) = μP (A) for all Borel sets A ⊂ R.

Convers7ely, assume that we have a probabilistic IFS defined by

fi(x) = ρx + ri, x ∈ R, i = 0, 1, . . . , m

with associated probabilities p0, p1, . . . , pm, 0 ≤ pi ≤ 1, i = 0, 1, . . . , m and∑m
i=0 pi = 1. This system induces a probabilistic measure μF by the formula
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(1.2). Then the sequence X0, X1, . . . of independent identically distributed ran-
dom variables each taking real values r0, r1, . . . , rm with respective probabilities
p0, p1, . . . , pm. That is, we obtain a probabilistic measure μP and it is clear that

μP (A) = μF (A) for all Borel sets A ⊂ R.

Thus, we have proved the following theorem.

Theorem 3.8. The probabilistic system is equivalent to the probabilistic iterated
function system.
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