Vietnam Journal of MATHEMATICS © NCST 2003

Interpolation of p-Adic Holomorphic Functions

Le Thi Hoai Thu

Institute of Mathemmatics, P.O. Box 631, Bo Ho, Hanoi, Vietnam

Received November 14, 2001 Revised May 15, 2002

Abstract. We give a necessary and sufficient condition for interpolation sequences of p-adic holomorphic functions on \mathbb{C}_p^* .

1. Introduction

With the construction of the p-adic zeta - function by interpolating a set of integers many more people are interested in the problem of p-adic interpolation. The p-adic interpolation is considered by Mahler in [8], and is investigated systematically by Amice [2], but only for bounded functions. In [4] Khoai proved a p-adic interpolation theorem for holomorphic functions by interpolating a discrete sequence of points in the unit disc. This is the first theorem on p-adic interpolations of unbounded functions. In [6] Khoai introduced the notion of height for a p-adic holomorphic function and for a sequence of points, and formulated and proved an interpolation theorem giving the necessary and sufficient condition for a discrete sequence of points to be an interpolating sequence of a given function. Note that in [6] the author considered only functions on the unit disc.

In [5] Khoai and in [7] Khoai and Quang applied the p-adic interpolation to the construction of an analog of Nevanlinna theory for p-adic holomorphic functions on the unit disc. In [3] Cherry obtained p-adic analog of Nevanlinna theory on the puntured plane \mathbb{C}_p^* . In this paper, motivated by the above mentioned results we consider the problem of p-adic interpolation on \mathbb{C}_p^* , and as a consequence, obtain an interpolation theorem for holomorphic functions on \mathbb{C}_p .

To formulate and prove the interpolation theorem we introduce the notion of height for a p-adic holomorphic function on \mathbb{C}_p^* and give an analog of the Poisson–Jensen formula.

2. The Height of a p-Adic Holomorphic Function and the Height of a Sequense of Points on \mathbb{C}_p^*

In this section we give the notion of height of a p-adic holomorphic function, height of a sequence of points in \mathbb{C}_p^* , and construct the Poisson-Jensen formula of p-adic holomorphic functions on \mathbb{C}_p^* .

Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers and \mathbb{C}_p the completion of the algebraic closure of \mathbb{Q}_p . The absolute value in \mathbb{C}_p is normalized so that $|p| = p^{-1}$. We further use v(z) to denote the additive valuation on \mathbb{C}_p , which extends ord_p .

For $\mu, \nu \in \mathbb{R} \cup \{-\infty, +\infty\}$, let $C(\mu, \nu) = \{z \in \mathbb{C}_p \mid \mu < \upsilon(z) < \nu\},$ $C[\mu, \nu] = \{z \in \mathbb{C}_p \mid \mu \leq \upsilon(z) \leq \nu\},$ $\mathbb{C}_p^* = C(-\infty, \infty) \text{ denote the puntured } p\text{-adic plane.}$

Let f(z) be a p-adic holomorphic function on \mathbb{C}_p^* , defined by a Laurent series:

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n z^n.$$

This means that, for all $t \in \mathbb{R}$

$$\lim_{|n| \to \infty} (v(a_n) + nt) = +\infty, \quad t = v(z).$$

Therefore for each $t \in \mathbb{R}$ there exists an integer n such that $v(a_n) + nt$ attains minimum.

Definition 1. The height of a p-adic holomorphic function f(z) is defined by

$$H(f,t) = \min_{n \in \mathbb{Z}} \{ v(a_n) + nt \}.$$

Now we give a geometric interpretation of the notion of height.

For each n we draw the graph Γ_n which depicts $v(a_n z^n) = v(a_n) + nv(z)$ as a function of v(z) = t. This graph is a straight line with slope n. From the definition of H(f,t) we see that H(f,t) is the boundary of all of half- planes lying under the lines Γ_n . Thus, the graph H(f,t) is a polygon line, which is called the Newton polygon of f(z).

Let

$$n_{f,t}^+ = \min\{n \in \mathbb{Z} \mid v(a_n) + nt = H(f,t)\},\$$

 $n_{f,t}^- = \max\{n \in \mathbb{Z} \mid v(a_n) + nt = H(f,t)\},\ (t = v(z)).$

If there are infinitely many $a_n \neq 0$ with n < 0, then

$$\lim_{t \to +\infty} n_{f,t}^+ = \lim_{t \to +\infty} n_{f,t}^- = -\infty.$$

Similarly, if there are infinitely many $a_n \neq 0$ with n > 0, then

$$\lim_{t \to -\infty} n_{f,t}^+ = \lim_{t \to -\infty} n_{f,t}^- = +\infty.$$

For each $t \in \mathbb{R}$ we set

$$h_{f,t}^+ = n_{f,t}^+ \cdot t$$
, $h_{f,t}^- = n_{f,t}^- \cdot t$ and $h_{f,t} = h_{f,t}^- - h_{f,t}^+$.

Definition 2. We call $h_{f,t}^+$, $h_{f,t}^-$, and $h_{f,t}$ the right local height, left local height and local height of the function f(z) at t = v(z), respectively.

Lemma 1.

- a) If $h_{f,t} = 0$, then $f(z) \neq 0$ for z satisfying v(z) = t, and we have ||f(z)|| = t $p^{-H(f,t)}$
- b) If $h_{f,t} \neq 0$, then f(z) has zeros at v(z) = t, and $h_{f,t}$ is equal to $t \times Card$ {the number of zeros of f(z) at v(z) = t }.
- c) In every compact interval of \mathbb{R} there are only finitely many t such that $h_{f,t} \neq$ 0, and such a point t is called a critical point of f(z).

The proof of the lemma follows from definition of the notion of height and the properties of the Newton polygon of f(z).

Let f(z) be a holomorphic function on \mathbb{C}_n^* ,

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n z^n.$$

We set

$$f_{+}(z) = \sum_{n=0}^{+\infty} a_n z^n, \quad f_{-}(z) = \sum_{n=1}^{+\infty} a_{-n} z^n.$$

Then $f_{+}(z)$, $f_{-}(z)$ are holomorphic functions in \mathbb{C}_{p} , and

$$f(z) = f_{+}(z) + f_{-}(\frac{1}{z})$$

From the geometric interpretation of heights we can see that

$$H(f,t) = \min\{H(f_+,t), H(f_-,-t)\}$$
 for every $t \in \mathbb{R}$,

and there exists $t_0 \in \mathbb{R}$ such that $H(f_+, t_0) = H(f_-, -t_0)$. We have

Lemma 2.

1)
$$H(f,t) = \begin{cases} H(f_+,t), & \text{if } t \leq t_0, \\ H(f_-,-t), & \text{if } t > t_0. \end{cases}$$

2) $h_{f,t}^+ = \begin{cases} h_{f_+,t}^+, & \text{if } t \leq t_0, \\ h_{f_-,-t}^-, & \text{if } t > t_0. \end{cases}$

$$2) h_{f,t}^+ = \begin{cases} h_{f_+,t}^+, & \text{if } t \le t_0, \\ h_{f_-,-t}^-, & \text{if } t > t_0. \end{cases}$$

3)
$$h_{f,t}^{-} = \begin{cases} h_{f_{-},-t}^{-}, & \text{if } t > t_{0}. \\ h_{f_{+},t}^{+}, & \text{if } t \leq t_{0}, \\ h_{f_{-},-t}^{+}, & \text{if } t > t_{0}. \end{cases}$$
4) $h_{f,t} = \begin{cases} h_{f^{+},t}, & \text{if } t \leq t_{0}, \\ -h_{f_{-},t}, & \text{if } t \leq t_{0}, \end{cases}$

4)
$$h_{f,t} = \begin{cases} h_{f^+,t}, & \text{if } t \leq t_0, \\ -h_{f^-,t}, & \text{if } t > t_0. \end{cases}$$

Proof

1) Since for every $n \in \mathbb{Z}$, n > 0 the graphs $\Gamma_n = v(a_{-n}) + nt$ and $\Gamma'_n = v(a_{-n}) + nt$ $v(a_{-n}) - nt$ are symmetric for each other through the axis of ordinates, if t is a critical point of f(z), $t > t_0$, then -t is a critical point of $f_-(z)$. Therefore if $t > t_0$, then $H(f, t) = H(f_-, -t)$.

In case $t \leq t_0$, by the properties of the Newton polygon we have

$$H(f_+, t) < H(f_+, t_0) = H(f_-, -t_0) < H(f_-, -t).$$

Hence, $H(f, t) = H(f_+, t)$.

2), 3), 4) For $t \le t_0$, since $H(f,t) = H(f_+,t)$, we have

$$n_{f,t}^+ = n_{f_+,t}^+, \quad n_{f,t}^- = n_{f_+,t}^-.$$

Consequently,

$$h_{f,t}^+ = h_{f_+,t}^+, \quad h_{f,t}^- = h_{f_+,t}^-, \quad h_{f,t} = h_{f_+,t}.$$

For $t > t_0$, since $H(f, t) = H(f_-, -t)$, we have

$$n_{f,t}^- = -n_{f_-,-t}^+, \quad n_{f,t}^+ = -n_{f_-,-t}^-.$$

Consequently,

$$h_{f,t}^- = h_{f_-,-t}^+, \quad h_{f,t}^+ = h_{f_-,-t}^-, \quad h_{f,t} = -h_{f_-,-t}.$$

The lemma is proved.

Now we give an analog of the Poisson-Jensen formula for p-adic holomorphic functions on \mathbb{C}_p^* .

Theorem 1. Let f(z) be a p-adic holomorphic function on \mathbb{C}_n^* , and assume that $H(f_+, t_0) = H(f_-, -t_0) \text{ for } a \ t_0 \in \mathbb{R}. \text{ Then}$

- 1) If $t \le t_0$, then $H(f, t_0) H(f, t) = h_{f, t_0}^- h_{f, t}^+ + \sum_{t < s < t_0} h_{f, s}$.
- 2) If $t' > t_0$, then $H(f, t_0) H(f, t') = h_{f,t_0}^+ h_{f,t'}^- \sum_{t_0 < s < t'} h_{f,s}$. 3) If $t < t_0 < t'$, then $H(f, t) H(f, t') = (h_{f,t_0}^+ h_{f,t_0}^-) + (h_{f,t}^+ h_{f,t'}^-) \sum_{t_0 < s < t'} h_{f,s} \sum_{t < s < t_0} h_{f,s}$.

Proof. Let $t' \geq t_{-m} > \cdots > t_{-1} > t_0 > t_1 > \cdots > t_n \geq t$ be all the critical points of f(z) in $[t,t'] \subset \mathbb{R}$.

1) For k = 0, 1, 2, ... we have

$$n_{f,t_k}^- = n_{f,t_{k+1}}^+$$
, and $H(f,t_k) - H(f,t_{k+1}) = n_{f,t_k}^-(t_k - t_{k+1})$.

Therefore, for $t \leq t_0$,

$$H(f,t_0) - H(f,t) = n_{f,t_0}^-(t_0 - t_1) + n_{f,t_1}^-(t_1 - t_2) + \dots + n_{f,t_n}^-(t_n - t)$$

$$= n_{f,t_0}^- \cdot t_0 + \sum_{i=1}^n (n_{f,t_i}^- - n_{f,t_{i+1}}^-) \cdot t_i - n_{f,t_n}^- \cdot t$$

$$= h_{f,t_0}^- - h_{f,t}^+ + \sum_{t \le s < t_0} h_{f,s}.$$

2) Similarly, for k = 1, 2, 3, ... we have

$$n_{f,t_{-k}}^+ = n_{f,t_{-(k+1)}}^-$$
 and $H(f,t_{-k}) - H(f,t_{-(k+1)}) = n_{f,t_{-k}}^+(t_{-k} - t_{-(k+1)}).$

Thus,

$$\begin{split} H(f,t_0) - H(f,t') &= n_{f,t_0}^+(t_0 - t_{-1}) + \dots + n_{f,t_{-m}}^+(t_{-m} - t') \\ &= n_{f,t_0}^+.t_0 - \sum_{t_0 < s < t'} (n_{f,t_{-k}}^- - n_{f,t_{-k}}^+).t_{-k} - n_{f,t'}^-.t' \\ &= h_{f,t_0}^+.t_0 - h_{f,t'}^- - \sum_{t_0 < s < t'} h_{f,t}. \end{split}$$

3) is a consequence of 1) and 2).

Now we let $U = \{..., u_{-1}, ..., u_{-1}, u_0, u_1, u_2, ..., u_n, ...\}$ be a sequence of distinct points on \mathbb{C}_p^* satisfying $v(u_i) \geq v(u_{i+1})$ for all $i \in \mathbb{Z}$. We shall consider only sequences U such that the number of points u_i in every $C(\mu, \nu)$ is finite for $-\infty < \mu < \nu < +\infty$. We set

$$n_{U,t}^{+} = \begin{cases} \#\{u_i \in U \mid t < v(u_i) \le t_0\}, & \text{if } t \le t_0, \\ \#\{u_i \in U \mid t_0 < v(u_i) < t\}, & \text{if } t > t_0. \end{cases}$$

$$n_{U,t}^{-} = \begin{cases} \#\{u_i \in U \mid t \le v(u_i) \le t_0\}, & \text{if } t \le t_0, \\ \#\{u_i \in U \mid t_0 < v(u_i) \le t\}, & \text{if } t > t_0, \end{cases}$$

where $t_0 = v(u_0)$.

We can define the height $H_{U,t}$ of U as follows.

Definition 3. For each $t \in \mathbb{R}$,

$$h_{U,t}^+ = n_{U,t}^+.t, \quad h_{U,t}^- = n_{U,t}^-.t, \quad h_{U,t} = h_{U,t}^-.t - h_{U,t}^+,$$

and

$$H(U,t) = \begin{cases} h_{U,t}^+ - h_{U,t_0}^- - \sum_{s>t} h_{U,s}, & if \quad t \le t_0, \\ h_{U,t_0}^- - h_{U,t}^+ + \sum_{s t_0. \end{cases}$$

We shall always assume that $\lim_{|t| \to \infty} H(U, t) = -\infty$.

We set

$$U_{+} = \{u_0, u_1, u_2, \dots\},\$$

where $v(u_0) \geq v(u_1) \geq ...$, and set

$$U_{-} = \left\{ \frac{1}{u_{-1}}, \frac{1}{u_{-2}}, \dots \right\},\,$$

where
$$v\left(\frac{1}{u_{-1}}\right) \ge v\left(\frac{1}{u_{-2}}\right) \ge \dots$$

For $t \le t_0$, we have $n_{U,t}^+ = n_{U^+,t}^+$, $n_{U,t}^- = n_{U^+,t}^-$.
Consequently,

$$h_{U,t}^+ = h_{U_+,t}^+, \quad h_{U,t}^- = h_{U_+,t}^-, \quad h_{U,t} = h_{U_+,t}, \quad \text{and} \quad H(U,t) = H(U_+,t).$$

For $t > t_0$ we have $n_{U,t}^+ = n_{U_-,-t}^+$, $n_{U,t}^- = n_{U_-,t}^-$, and then $h_{U,t}^+ = -h_{U_-,-t}^+$, $h_{U,t}^- = -h_{U_-,-t}^-$, $h_{U,t} = -h_{U_-,-t}$, and $H(U,t) = H(U_-,-t)$.

3. Interpolation of Holomorphic Functions on \mathbb{C}_p^*

Now we shall use the notion of height of a holomorphic function and a sequence to give an interpolation theorem. We first need the following definitions.

Definition 4. Let f(z) be a holomorphic function on \mathbb{C}_p . A sequence $U = \{u_i\}_{i=0}^{\infty}$ is called an interpolating sequence of f(z) if the sequence of interpolation polynomals for f on U converges to f(z).

Definition 5. Let f(z) be a holomorphic function on \mathbb{C}_p^* . A sequence $U = \{u_i\}_{i=-\infty}^{+\infty}$ is called an interpolation sequence of f(z) if U_+ is an interpolating sequence of $f_+(z)$ and U_- is an interpolating sequence of $f_-(z)$.

Theorem 2. Let f(z) be a holomorphic function on \mathbb{C}_p^* . A sequence U is an interpolating sequence of f(z) if and only if

$$\lim_{|t| \to \infty} \{ H(f, t) - H(U, t) \} = +\infty$$

Proof. We first prove the necessary condition.

Let $\{P_k(z)\}$ be the sequence of Lagrange interpolation polynomials for $f_+(z)$ on U_+ . We have

$$\deg P_k(z) \le k$$
, $P_k(u_i) = f_+(u_i)$, $i = 0, 1, 2, ...k$.

We set $S_k(z) = P_{k+1}(z) - P_k(z)$.

By the assumption we have

$$f_+(z) = \sum_{k=0}^{\infty} S_k(z).$$

This implies

$$H(f_+,t) \ge \min_{k>0} \{H(S_k,t)\}.$$

Thus,

$$H(f_+,t) - H(U_+,t) \ge \min_{k>0} \{H(S_k,t) - H(U_+,t)\}.$$

Since S_k is a polynomial of degree k and $\lim_{t\to-\infty}H(U_+,t)=-\infty$,

$$\lim_{t \to -\infty} \{ H(S_k, t) - H(U_+, t) \} = +\infty.$$

It follows that

$$\lim_{t \to -\infty} \{ H(f_+, t) - H(U_+, t) \} = +\infty.$$
 (1)

We also have a similar result for the function f_{-} and the sequence U_{-} , i.e.,

$$\lim_{t \to +\infty} \{ H(f_{-}, -t) - H(U_{-}, -t) \} = +\infty.$$
 (2)

On the other hand, for $t \ll 0$ we have

$$H(f,t) = H(f_+,t)$$
 and $H(U,t) = H(U_+,t)$,

for $t \gg 0$,

$$H(f,t) = H(f_{-}, -t)$$
 and $H(U,t) = H(U_{-}, -t)$.

By combining these equalities with (1) and (2) we obtain

$$\lim_{|t|\to\infty} \{H(f,t) - H(U,t)\} = +\infty.$$

The necessity is proved.

Now we prove the sufficiency. By using arguments similar to ones used in the proof of Lemma 3.10 in [6] we obtain the following

Lemma 3. For k such that $v(u_k) = t_k < t_{k_0} < 0$ we have

$$[H(S_k, t_{k_0}) - H(U_+, t_{k_0})] - [H(S_k, t_k) - H(U_+, t_k)] \ge t_{k_0}.$$

Let $\{t_k\}$ be a sequence of real numbers, $t_k \to -\infty$ as $k \to +\infty$. There exists k_0 such that for all $k > k_0$, $N > k_0$, $t_k = v(u_k) < t_N < 0$. We have

$$H(S_k, t_N) \ge H(U_+, t_N) + [H(S_k, t_k) - H(U_+, t_k)] + t_N.$$

Further, by Lemma 3.11 in [6] we get

$$H(S_k, t_N) \ge H(U_+, t_N)$$

+ $t_N + \min\{[H(f_+, t_k) - H(U_+, t_k)], [H(f_+, t_{k+1}) - H(U_+, t_{k+1})]\}.$

From this and the assumption we have

$$\lim_{k \to +\infty} H(S_k, t_N) = +\infty.$$

In other words, $\lim_{k \to +\infty} S_k(z) = 0$. Hence, the sequence $\{P_k(z)\}$ converges.

Let
$$P(z) = \lim_{k \to +\infty} P_k(z)$$
. We show that $P(z) = f_+(z)$.
Set $g(z) = P(z) - f_+(z)$. We have $g(u_i) = 0$ for $i = 0, 1, ...$ thus,

Set
$$g(z) = P(z) - f_{+}(z)$$
. We have $g(u_i) = 0$ for $i = 0, 1, ...$ thus,

$$n_{g,t}^- \ge n_{U_+,t}^-$$
 for every $t \in \mathbb{R}$. (3)

On the other hand, by Lazard's Lemma [9] we have

$$f_{+}(z) = \phi(z) \prod_{i=0}^{k} (z - u_i) + Q_k(z),$$

where $\deg Q_k(z) \leq k$, $Q_k(u_i) = P_k(u_i)$ for i = 0, 1, 2...k, $H(Q_k, t) \geq H(f_+, t)$. Hence we have $Q_k(z) \equiv P_k(z)$. Thus, $H(P_k, t) \geq H(f_+, t)$, and consequently, $H(P, t) \geq H(f_+, t)$.

We have

$$\lim_{t \to -\infty} [H(g,t) - H(U_+,t)] = +\infty. \tag{4}$$

This implies $g(z) \equiv 0$, because if $g(z) \not\equiv 0$ we see that (3) constradicts (4).

It follows that U_+ is an interpolation sequence of $f_+(z)$. Similarly, U_- is an interpolation sequence of $f_-(z)$.

The proof of Theorem 2 is complete.

Now let f(z) be a holomorphic function on \mathbb{C}_p represented by a Taylor series $f(z) = \sum_{n=0}^{+\infty} a_n z^n$. From Theorem 2 we obtain the following

Corollary. A sequence $U = \{u_0, u_1, u_2, ...\}$ for which $v(u_i) \geq v(u_{i+1})$ and the number of points u_i satisfying $v(u_i) \geq t$ is finite for $t \in \mathbb{R}$, is an interpolation sequence of f(z) if and only if

$$\lim_{t \to -\infty} \{ H(f, t) - H(U, t) \} = +\infty.$$

References

- 1. Y. Amice, Les Nombres p-Adiques, Presses Universitaires de France, 1975.
- 2. Y. Amice, Interpolation p-adique, Bull. Soc. Math. France. 92 (1964) 117–180.
- William Cherry, Hyperbolic p-adic analytic spaces, Ph.D. Thesis, Yale University, 1993.
- 4. Ha Huy Khoai, P- adic interpolation, AMS Translations, Math. Notes 1 (1979) 22.
- Ha Huy Khoai, On p-adic meromorphic functions, Duke. Math. J. 50 (1983) 695–711.
- 6. Ha Huy Khoai, Heights for p-adic meromophic functions and value distribution theory, $Vietnam\ J.\ Math.\ 20\ (1992)\ 14–29.$
- Ha Huy Khoai and My Vinh Quang, On p-adic Nevanlinna theory, Lecture Notes in Mathematics, Vol. 1351 Springer-Verlag (1988) pp. 146–158.
- 8. K. Mahler, An interpolation series for continuous functions of a *p* adic variable, J. Reine Angew. Math. **199** (1958) 23–34.
- 9. M. Lazard, Les zéros d'une fonction analytique d'une variable sur un corps valué complet, $Publ.\ Math.\ IHES\ {\bf 14}\ (1962)\ 223-251$.