
Vietnam Journal of Mathematics 31:3 (2003) 353-358 ������� 	
����


 �

�����������

� ���� ���	

Short communication

dd-Sequences and Partial Euler-Poincaré
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1. Introduction

Let (R, m) be a local commutative Noetherian ring with maximal ideal m and M
a finitely generated R-module. It is well-known that the theory of d-sequences
[9], especially the theory of unconditioned strong d-sequences [8], plays a very
important role for the studying of Buchsbaum and generalized Cohen-Macaulay
modules. Recall that a sequence x = x1, . . . , xs ∈ m is a d-sequence if for all
0 ≤ i < j ≤ s,

(x1, . . . , xi)M :M xj = (x1, . . . , xi)M :M xi+1xj,

x is called a strong d-sequence if any power xn1
1 , . . . , xns

s is a d-sequence and x
is called an unconditioned strong d-sequence if it is a strong d-sequence for any
order.

The aim of this short note is to give a new concept of sequences called dd-
sequences, which is a slight generalization of the notion of unconditioned strong
d-sequence. Then we apply these dd-sequences to study the polynomial property
of the lengths of Koszul homology and of local cohomology modules with respect
to the powers of a system of parameters. A completion of all proofs of statements
given here can be found in [3].

2. dd-Sequences

Throughout this short note, let (R, m) denote a commutative local Noetherian
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ring and M a finitely generated R-module with dim(M) = d. For a sequence
x1, . . . , xs of elements of m and an s-tuple of positive integers n1, . . . , ns, we
will denote by x the sequence x1, . . . , xs and x(n) the sequence xn1

1 , . . . , xns
s .

Definition 2.1. Let M be a finitely generated R-module and x = x1, . . . , xs a
sequence of elements of the maximal ideal m. We call x a dd-sequence of M if
either s = 1, x is a d-sequence or s > 1 and
(i) x is a strong d-sequence,
(ii) for all n > 0 the sequence x1, . . . , xs−1 is a dd-sequence of M/xn

dM .

It is easy to see that the sequence x = x1, . . . , xs is a dd-sequence of M if
and only if for all i ∈ {1, . . . , s} and all s-tuples of positive integers n1, . . . , ns,
the sequence xn1

1 , . . . , xni

i is a d-sequence of the module M/(xni+1
i+1 , . . . , xns

s )M .
Let x1, . . . , xs be a sequence of elements of m. For all i ∈ {1, . . . , s}, de-

note the sequence x1, . . . , xi−1, xi+1, . . . , xs by x1, . . . , x̂i, . . . , xs, the following
proposition shows that dd-sequences are very relatively close to unconditioned
strong d-sequences.

Proposition 2.2. Let x1, . . . , xs be a dd-sequence of M , then for all i ∈
{1, . . . , s}, the sequence x1, . . . , x̂i, . . . , xs is a dd-sequence of M/xiM .

As the first main result of this note, we have the following characterization
of dd-sequence.

Theorem 2.3. Let M be a finitely generated R-module, x a system of parame-
ters of M . The system of parameters x is a dd-sequence if and only if

l(M/x(n)M) =
d∑

i=0

n1 . . . niei,

where ei = e(x1, . . . , xi; (0 : xi+1)M/(xi+2...xd)M ) for i < d and ed = e(x, M).

In [6], the first author introduced the notion of a p-standard system of pa-
rameters and then this notion is used to solve the problem of Macaulayfication
by T. Kawasaki in [10, 11]. Note that if x is a p-standard system of parameters
of M then the function l(M/x(n)M) also has the form as mentioned in Theorem
2.3 (see [6, Theorem 2.6]). Therefore an immediate consequence of Theorem 2.3
is that every p-standard system of parameters is a dd-sequence.

Proposition 2.4. Let x be a system of parameters of a finitely generated R-
module M which is also a dd-sequence. Then xn1

1 , . . . , xnd

d is a p-standard system
of parameters for all ni ≥ i, i = 1, . . . , d.

Proposition 2.4 showed that the existence of these two kinds of systems of
parameters are equivalent. However, a p-standard system of parameters is in
general not necessary a dd-sequence as in the following example.

Example 2.5. Let R be the ring k[[X1, . . . , Xd+1]] of formal power series over
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a field k with the maximal ideal m and M denote the R-module R/IR where
I = (Xd+1

d+1 , X1X
d
d+1, X2X

d−1
d+1 , . . . , XdXd+1), (d > 1). Then dim(M) = d and

X1, . . . , Xd is a system of parameters of M . By simple computation we get

�(M/(Xn1
1 , . . . , Xnd

d )M) =
d∑

i=0

n1 . . . ni,

where if i = 0 then n1 . . . ni = 1. Hence the system of parameters X1, . . . , Xd

is a dd-sequence of M. On the other hand, it is not difficult to check that
H0

m(M) = (Xd
d+1 , X2X

d−1
d+1 , . . . , XdXd+1)/I, thus a0(M) = AnnR(H0

m(M)) =
m. Moreover, since R is an image of a regular local ring, we have by [4, Theorem
1.2] that d−1 = dim(R/a(M)), where a(M) = a0(M) . . .ad−1(M) and ai(M) =
AnnR(Hi

m(M)). This leads to the existence of i ∈ {1, . . . , d − 1} such that
ai(M) ⊆ m. Therefore a(M) ⊂ m2. Since Xd /∈ m2 then Xd /∈ a(M). This
shows that X1, . . . , Xd is not a p-standard system of parameters of M .

3. Partial Euler-Poincaré Characteristics

Let x be a system of parameters of M . Denote by K(x; M) the Koszul complex
of M with respect to x and Hi(x; M) its i-th homology module. The k-th
Euler-Poincaré characteristic of K(x; M) is defined by

χk(x; M) =
d∑

i=k

(−1)i−kl(Hi(x; M)).

It is well-known that χ0(x; M) = e(x; M), the multiplicity of M with respect
to x. Therefore, χ1(x; M) = l(M/xM) − e(x; M). In general, there are many
examples showing that the function χk(x(n); M) is not a polynomial. However,
if χk(x(n); M) is a polynomial then it is linear in each variable ni, i.e

χk(x(n); M) =
d∑

t=0

∑
0<i1<...<it≤d

λi1...itni1 . . . nit ,

where the coefficients λi1...it are integers.
It is known in [7] that for all k ≥ 0 the function χk(x(n); M) is always

bounded above by a polynomial and the least degree of these polynomials is inde-
pendent of the choice of system of parameters, it is an invariant of M and denoted
by pk(M). The invariant p1(M) was denoted in [5] by p(M) and called the poly-
nomial type of M . There are many interesting results on these invariants (see [5
- 7]). For examples, if we denote by −∞ the degree of the polynomial zero then a
module M is Cohen-Macaulay if and only if p1(M) = −∞ and M is generalized
Cohen-Macaulay if and only if p1(M) ≤ 0. When the system of parameters x
is a dd-sequence and p1(M) > 0 then p1(M/x1M) = p1(M) − 1. Therefore, if
p1(M) = k then the module M/(x1, . . . , xk)M is generalized Cohen-Macaulay.

The following theorem is a criterion to check whether the function χk(x(n); M)
is a polynomial.
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Theorem 3.1. Let M be a finitely generated R-module and x a system of
parameters of M . Let n0 be a positive integer. Then the function χk(x(n); M) is
a polynomial for all ni ≥ n0 if and only if for all i = 1, 2, . . . , d and n1, . . . , nd ≥
n0, the following condition is satisfied

(0 : xni

i )
Hk−1(x

n1
1 ,... ,x̂

ni
i ,... ,x

nd
d

;M)
= (0 : xn0

i )
Hk−1(x

n1
1 ,... ,x̂

ni
i ,... ,x

nd
d

;M)
.

The main result of this note is the following theorem.

Theorem 3.2. Let M be a finitely generated R-module, x = x1, . . . , xd a
system of parameters of M . Suppose that x is a dd-sequence of M . Then for
all k > 0, the function χk(x(n); M) is a polynomial for all n1, . . . , nd > 0.
Moreover, the polynomial has the form as follows

χk(x(n); M) =
pk(M)∑

i=0

n1 . . . nie(x1, . . . , xi; (0 : xi+1)Hk−1(xi+2,... ,xd;M)).

In order to prove the theorem, we need the following key lemma.

Lemma 3.3. Let M be a finitely generated R-module and x = x1, . . . , xs a
sequence of elements of m. If x is a dd-sequence of M then for all 1 ≤ i ≤ j ≤ s
and 0 ≤ k ≤ s we have

(0 : xj)Hk(x1,... ,xi−1,xj+1,... ,xs;M) = (0 : xixj)Hk(x1,... ,xi−1,xj+1,... ,xs;M).

4. Local Cohomology Modules

Another consequence of Theorem 2.3 is that if p1(M) > 0 and a system of pa-
rameters x of M is a dd-sequence then p1(M/x1M) = p1(M) − 1. It follows
that for k ≥ p1(M), we have p1(M/(xn1

1 , . . . , xnk

k )M) ≤ 0. Therefore the mod-
ule Mk = M/(xn1

1 , . . . , xnk

k )M is a generalized Cohen-Macaulay module, hence
l(Hi

m(Mk)) < ∞ for all i < d − k and xk+1, . . . , xd is a standard system of
parameters of Mk. In this section we are interested in the question: Whether
l(Hi

m(Mk)) is a polynomial in n1, . . . , nk ?

Proposition 4.1. Let x be a system of parameters of a finitely generated R-
module M . If x is a strong d-sequence then the length of the Koszul homology
module Hi(xn1

1 , . . . , x
nj

j ; M) is finite and given by

l(Hi(xn1
1 , . . . , x

nj

j ; M)) =
j−i∑
s=0

(
j − s − 1

i − 1

)
l(H0

m(M/(xn1
1 , . . . , xns

s )M)).



dd-Sequences and Partial Euler-Poincaré 357

For a given system of parameters x which is a dd-sequence, we put

fs(n1, . . . , ns) = l((xn1
1 , . . . , xns

s )M :M xs+1/(xn1
1 , . . . , xns

s )M).

Therefore, by Proposition 4.1, we can show that

fj(n1, . . . , nj) =
j∑

i=0

(−1)j−i

(
d− i − 1
d − j − 1

)
l(Hd−i(x(n); M)).

So by Theorem 3.2 the function fj(n1, . . . , nj) is a polynomial for all j. Fur-
thermore, if k ≥ p1(M) then xk+1, . . . , xd is a standard system of parameters of
Mk = M/(xn1

1 , . . . , xnk

k )M . It follows that

l(Hi
m(Mk)) =;

i∑
j=0

(−1)i−j

(
i
j

)
l(H0

m(Mk/(xk+1, . . . , xk+j)Mk)

=
i∑

j=0

(−1)i−j

(
i
j

)
fk+j(n1, . . . , nk, 1, . . . , 1).

We therefore get the following theorem

Theorem 4.2. Let x be a system of parameters of a finitely generated R-module
M . If x is a dd-sequence then the length l(Hi

m(M/(xn1
1 , . . . , xnk

k )M)), considered
as a function in variables n1, . . . , nk, is a polynomial for all k ≥ p1(M) and
i < d − k.
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