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Abstract. The present survey is an outline of some results on the completion of the

Denjoy space due, in the one-dimensional case, to Ang, Lee and Vy [1], and, in the

higher dimensional case, to Ang, Schmitt and Vy [2]. An application is given to an

initial value problem with little smoothness on the initial value.

1. Introduction

The space of Henstock integrable functions on [a, b], called the Denjoy space,
has been studied by several authors (see [8] and the references therein). One
disadvantage of the space is that it is not complete under the given norm

‖f‖ = sup
{∣∣∣

x∫
a

f(t)dt
∣∣∣ : a ≤ x ≤ b

}
.

The completion of the Denjoy space is, in fact, a closed subspace of the space of
distributions on [a, b] (cf. [1]). These one dimensional distributions are deriva-
tives of continuous functions, they are said to be G-integrable, and their integral
is, in fact, a generalization of the Denjoy–Perron–Henstock integral.
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We first make a definition. We say that a distribution f is G-integrable on
[a, b] if there is a continuous function F on [a, b] whose (distributional) derivative
is f and then the G-integral of f on [a, b] is given by

(G)

b∫
a

f = F (b) − F (a).

The following results have been proved in [1]:
(i) If f , g are G-integrable on [a, b] and α, β are real numbers, then αf + βg

is also G-integrable on [a, b] and

(G)

b∫
a

(αf + βg) = α(G)

b∫
a

f + β(G)

b∫
a

g.

(ii) If f is G-integrable on [a, b] and [c, d] ⊂ [a, b], then f is G-integrable on
[c, d], i.e., f is a distribution defined on D[c, d] and the derivative in the
distribution sense of a continuous function.

(iii) If f is G-integrable on [a, c] and on [c, b] and if f is G-integrable on [a, b],
then

(G)

b∫
a

f = (G)

c∫
a

f + (G)

b∫
c

f.

The proofs of the foregoing facts can be found in [1] where some convergence
theorems are proved for sequences of (one-dimensional) G-integrable distribu-
tions.

The remainder of the paper deals with multidimensional forms of the Denjoy-
Perron-Henstock-Kurzweil integral. A number of multidimensional integration
theories, that are extensions of, or have relations to, the Denjoy–Perron–Henstock
–Kurzweil integral, were studied in recent years in e.g. [4], [8] (generalized
Riemann integral), [3] (generalized Denjoy integral), [9] (GP-integral), [7] (BV-
integral) and others. Compared with those integrals, the one presented here has
several advantages. First, one main goal of the above theories is to weaken the
smoothness conditions on the vector fields in the Divergence theorem. In the
quoted works, the continuous differentiability of the vector fields was replaced by
their continuity and their pointwise, or asymptotic or a.e. differentiability (with
some other supplementary conditions). Here, we shall remove all hypotheses
about differentiability and give a Divergence theorem for the class of all contin-
uous vector fields (in fact, for a larger class consisting of distributions). In our
case, the derivatives are no longer functions but are distributions. Second, as
was remarked in [8], unlike the one-dimensional case, one drawback of the known
multidimensional integrals is that one cannot develop in the same system both
Divergence and Fubini type theorems. This can be done, however, in the inte-
gration theory presented here. The third point concerns convergence theorems.
In some of the previous integration theories, the convergence theorems are rather
complicated (see, e.g., Sec. 21, Chap. 5, 2b) and in some others, they seem to be
incomplete (for example, in [9] or [3], there were forms of monotone convergence
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theorems, but dominated convergence type theorems were missing). In our pa-
per [2], we proved some simple general convergence theorems that admit both
monotone and dominated convergence theorems as direct consequences.

To simplify the presentation, we study here integration theory in the plane.
The general case can be carried out in much the same way. The remainder of the
paper consists of six sections. In Sec. 2, we define the class of G-integrable dis-
tributions, and an integration theory for it. Elementary properties such as linear
operations, relation with Lebesgue integration ... are considered in this section.
In Sec. 3, we consider some Fubini type theorems for G-integrable distributions.
A Green’s theorem is proved in Sec. 4. Sec. 5 is devoted to convergence theorems.
The final Sec. 6 deals with an application to differential equations.

2. Definition of the Class G(Q) and Integration on G(Q)

Let a, b, c, d ∈ R, a < b and c < d. In the sequel, we usually denote by Q the
(open) rectangle (a, b) × (c, d) in R

2. For simplicity, we put ∂ = ∂12 = ∂21 in
D′(Q) where D(Q) is the space of test functions and consider the class

G(Q) =
{
∂F ∈ D′(Q) : F ∈ C(Q)

}
.

We shall study G(Q) and define an integration on it. We need the following

Lemma 1. Let F ∈ C(Q). Then ∂F = 0 (in D′(Q)) if and only if there exist
H ∈ C([a, b]), K ∈ C([c, d]) such that

F (x, y) = H(x) + K(y) ∀x, y ∈ Q. (1)

For f ∈ G(Q), we put

F(f) =
{
F ∈ C(Q) : ∂F = f in D′(Q)

}
.

Then, we have

Lemma 2. Let f ∈ G(Q), F1, F2 ∈ F(f). Then

F1(x, y) + F1(a, c) − F1(a, y) − F1(x, c)
= F2(x, y) + F2(a, c) − F2(a, y) − F2(x, c)

(2)

for all (x, y) ∈ Q. Moreover, there exists a unique F (f) ∈ F(f) such that

F (f)(a, y) = F (f)(x, c) = 0 ∀x ∈ [a, b], y ∈ [c, d]. (3)

In view of the above lemmas, we can set the following

Definition 1. Let f ∈ G(Q) (f is said to be G-integrable on Q) and let

Q′ = (a′, b′) × (c′, d′) ⊂ Q.

We put
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Q′

f = F (f)(b′, d′) + F (f)(a′, c′) − F (f)(a′, d′) − F (f)(b′, c′) (4)

where F (f) is given by Lemma 2.

From Lemma 2, it is seen that (4) still holds if we replace F (f) by any
F ∈ F(f). When Q′ = Q, (4) becomes∫

Q

f = F (f)(b, d). (5)

Now, we put

Ĉ(Q) =
{
f ∈ C(Q) : f(a, y) = f(x, c) = 0 ∀x ∈ [a, b], y ∈ [c, d]

}
and for f ∈ G(Q)

‖f‖ = sup
{∣∣∣ ∫

(a,x)×(c,y)

f
∣∣∣ : (x, y) ∈ Q

}
.

It can be verified that Ĉ(Q) is a closed (and thus a Banach) subspace of C(Q)
(with the usual norm ‖f‖∞ = max

(x,y)∈Q
|f(x, y)|) and that ‖.‖ is a norm on G(Q).

In fact we have

Theorem 1.
(
G(Q), ‖.‖) is a separable Banach space which is isomorphic to(

Ĉ(Q), ‖.‖∞
)
.

The next theorem shows that the integral on G(Q) is an extension of the
Lebesgue integral (in what follows we use (L)

∫
to denote the Lebesgue integral).

Theorem 2. If we identify f ∈ L1(Q) with the distribution

f : φ �→ (L)
∫
Q

fφ, φ ∈ D(Q),

then f ∈ G(Q) and
∫
Q

f = (L)
∫
Q

f . Moreover, C(Q) is dense in
(
G(Q), ‖.‖) and

G(Q) is the completion of C(Q)
(
or L1(Q)

)
with respect to the norm

‖f‖ = sup
{∣∣∣(L)

x∫
a

y∫
c

f
∣∣∣ : (x, y) ∈ Q

}
.

3. Fubini Theorems for G-Integrable Distributions

In this section, we consider some Fubini type theorems for the G-integral. These
theorems will be applied to some initial value problems for the two-dimensional
wave equation with nonsmooth initial data.
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3.1. We first make some remarks on traces of integrals of G-integrable distribu-
tions.

Let f ∈ C(Q) and x ∈ [a, b]. Consider the function
x∫

a

f(ξ, ·)dξ : [c, d] → R

y �→
x∫

a

f(ξ, y)dξ.

For y ∈ [c, d], we have
x∫

a

f(ξ, y)dξ =
d

dy

y∫
c

x∫
a

f(ξ, η)dξdη =
d

dy
[F (f)(x, y)].

Thus
x∫

a

f(ξ, ·)dξ = [F (f)(x, ·)]′ on [c, d].

Generalizing to the case f ∈ G(Q), we have the following

Definition 2. Let f ∈ G(Q), x ∈ [a, b], y ∈ [c, d]. We define
x∫

a

f(ξ, ·)dξ =
[
F (f)(x, ·)]′ in D′(c, d),

y∫
c

f(·, η)dη =
[
F (f)(·, y)

]′ in D′(a, b).

Since
F (f)(x, ·) ∈ C([a, b]) and F (f)(·, y) ∈ C([c, d]),

we have (cf. [1])
∞∫

a

f(ξ, ·)dξ ∈ G(c, d) and

y∫
c

f(·, η)dη ∈ G(a, b).

By [1], we can integrate these distributions over [c, d] and [a, b] respectively. Note
that there is consistency in the above definition.

Following is a Fubini type theorem.

Theorem 3. For all f ∈ G(Q), we have
∫
Q

f =

b∫
a

( d∫
c

f(·, η)dη
)

=

d∫
c

( b∫
a

f(ξ, ·)dξ
)
.

For a proof, we remark first that the above repeated integrals exist in the
sense of [1]. Since F (f)(·, d)(a) = F (f)(a, d) = 0, one has (see [1])
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F (f)(·, d) = F
( d∫

c

f(·, η)dη
)

and b∫
a

( d∫
c

f(·, η)dη
)

= F (f)(b, d) =
∫
Q

f.

We obtain the first equality. The second is proved similarly.

3.2. In this section, we derive another form of Fubini’s theorem for a subclass
of G(Q). To this end, we define

G∗
1(Q) =

{
∂1F (distributionally) : F ∈ L1(Q),

F (·, y) ∈ C([a, b]) for a.e. y ∈ [c, d],

and there exists g = g(F ) ∈ L1(c, d)

such that |F (x, ·)| ≤ g ∀x ∈ [a, b]
}
,

G∗
2(Q) =

{
∂2F (distributionally) : F ∈ L1(Q),

F (x, ·) ∈ C([c, d]) for a.e. x ∈ [a, b],

and there exists g = g(F ) ∈ L1(a, b)

such that |F (·, y)| ≤ g ∀y ∈ [c, d]
}
.

Then we have

Theorem 4. If f ∈ G(Q) ∩ G∗
1(Q), then the function

y �→
b∫

a

f(·, y), y ∈ [c, d]

is Lebesgue integrable on [c, d] and
∫
Q

f =

d∫
c

( b∫
a

f(·, y)dy
)
.

Hence for all f ∈ G(Q) ∩ G∗
1(Q) ∩ G∗

2(Q), we have
∫
Q

f =

d∫
c

( b∫
a

f(·, y)dy
)

=

b∫
a

( d∫
c

f(x, ·)dx
)
.

4. Green’s Theorem for G-Integrable Distributions

In this section, the boundary Γ = ∂Q = {a, b}× [c, d] ∪ [a, b]× {c, d} is oriented
in the usual (counter-clockwise) direction. Let pdx + qdy be differential form in
Q, where p, q ∈ D′(Q) is a (distributional) vector field. If the traces of p and q
on the sides of Q can be defined and if the integrals
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∫
[a,b]×{c}

p
∣∣
[a,b]×{c}=

b∫
a

p(·, c)
∫

[a,b]×{d}

p
∣∣
[a,b]×{d}=

b∫
a

p(·, d)

∫
{a}×[c,d]

q
∣∣
{a}×[c,d]

=

d∫
c

q(a, ·)
∫

{b}×[c,d]

q
∣∣
{b}×[c,d]

=

d∫
c

q(b, ·)

exist in some sense, then we can define the integral of the form pdx + qdy in the
usual way by

∫
Γ

pdx + qdy =

b∫
a

p(·, c) −
b∫

a

p(·, d) +

d∫
c

q(b, ·) −
d∫

c

q(a, ·).

We have the following form of Green’ s theorem for G(Q).

Theorem 5. Suppose the vector field (p, q) ∈ G1(Q) × G2(Q) where

Gi(Q) =
{
∂iF : F ∈ C(Q)

}
, i = 1, 2.

Then
(i) the traces p(·, c), p(·, d) (resp. q(a, ·), q(b, ·)) are (one-dimensional) G-integrable

distributions on [a, b] (resp. [c, d]);
(ii) ∂1q, ∂2p ∈ G(Q) and we have Green’ s formula∫

Γ

pdx + qdy =
∫
Q

(∂1q − ∂2p).

5. Convergence Theorems

We examine conditions on sequences {fn} ⊂ G(Q) in order that the convergence
of fn to f (in some sense) with f ∈ G(Q) implies that

∫
Q

fn → ∫
Q

f . We recall

that a sequence {Fn} on Q is said to be locally uniformly bounded in Q if for
each x ∈ Q there exists a neighborhood Ux ⊂ Q of x such that sup{|Fn(y)| : y ∈
Ux, n ∈ N} < ∞.

We have the following convergence theorem

Theorem 6. Let {fn} be a sequence in G(Q) such that
(i) The sequence of primitives {F (fn)} is locally uniformly bounded in Q.
(ii) {F (fn)} converges pointwise on Q to a continuous function on Q.

Then {F (fn)} converges distributionally to a G-integrable distribution f and
moreover

∫
Q

fn → ∫
Q

f as n → ∞.

This theorem admits the following variant
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Theorem 7. Let {fn} be a sequence in G(Q) such that (i) and (ii) above hold
and that fn → f in D′(Q). Then f ∈ G(Q) and

∫
Q

fn → ∫
Q

f as n → ∞.

From these theorems, some familiar consequences can be derived

Corollary 1. Let {fn} be a sequence in G(Q) such that fn → f in D′(Q) and
that {F (fn)} is equicontinuous on Q. Then fn → f in G(Q) and

∫
Q

fn → ∫
Q

f as

n → ∞.

Corollary 2. (Monotone convergence theorem for G-integral) Let {fn} be a
sequence in G(Q) such that f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · and that

∫
Q

fn → a as

n → ∞. Then fn → f in G(Q) and
∫
Q

f = a.

Corollary 3. (Dominated convergence theorem for G-integral) Let {fn} be a
sequence in G(Q) such that fn → f in D′(Q). Suppose there exist g, h ∈ G(Q)
satisfying g ≤ fn ≤ h, ∀n ∈ N. Then f ∈ G(Q) and limn→∞

∫
Q

fn =
∫
Q

f .

6. An Application to Differential Equations

An application to G-integration is given to an elementary “initial value” problem
for the wave equation, where an initial value data that must not necessarily be
smooth and solutions are sought in the class G(Q).

Specifically, the following simple problem is considered in the unit square
Q = (0, 1)2 ⎧⎪⎨

⎪⎩
uxy = ∂12u = f in Q

u(x, x) = h(x)
uy(x, x) = ∂2u(x, x) = g(x) for x ∈ (0, 1).

(IVP)

It is assumed that g and h are continuous on [0, 1] and that f ∈ G1(Q) where

G1(Q) =
{
∂1F : F ∈ C(Q)

}
.

The problem is to find solutions u of (IVP) in the class

A =
{
u ∈ C(Q) : ∂2u ∈ C(Q)

}
.

As shown in [2], the problem admits a unique solution given by

u(x, y) =

x∫
0

y∫
0

f + h(x) −
x∫

0

x∫
0

f −
x∫

0

[
g(ξ) −

ξ∫
0

f(t, ξ)dt
]
dξ

+

x∫
0

g −
x∫

0

ξ∫
0

f(t, ξ)dtdξ.
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It is noted that wave equations with nonsmooth (distributional) data have
been studied extensively since the appearance of distributions (cf. [5] and the
references therein, see also [14] for a nice and elementary presentation). In
departure from the classical approach, in which the initial conditions are included
as source terms, our approach here is, in some sense, between the classical and
distributional ones, and we can relax smoothness conditions on the source terms
and the problem can now be written as an integral equation.

In closing, we quote the recent book on the subject with a different point of
view by Salomon Leader, “The Kurzweil–Henstock integral and its differentials
on R and R

2”, Marcel Dekker, Basel 2001.
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5. L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd Edi-

tion, Springer, New York, 1993.

6. V.K. Khoan, Distributions, Analyse de Fourier, Operateurs aux Dérivée Par-
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